FINAL

An Evaluation of the Software through Pictures/T Tool (StP/T)
for the Software Support Activity (SSA)

Prepared By:

Prepared For:

Contract Number:

CDRL

November 28, 1994

Intermetrics, Inc. e
607 Louis Drive S A
Warminster, PA 18974

Naval Air Warfare Center - Aircraft Division
Warminster, PA 18974
N62269-90-C-0412

B00J

Virgil Banowetz
;7. -
Mw%/ ity 25 1994
Originator 7 Date
Steve Nicolay
osiEn B
ﬁ N / ale, Mo 2% 1951
eviéwer ate

———l,
O
O
=
e N
PO
————e.
~F
LS
Tl
PO

FINAL

An Evaluation of the Software through Pictures/T Tool (StP/T)
for the Software Support Activity (SSA)

November 28, 1994

Prepared By: Internﬁetrics, Inc.
607 Louis Drive
Warminster, PA 18974

Prepared For: Naval Air Warfare Center - Aircraft Division
Warminster, PA 18974

Contract Number: N62269-90-C-0412

CDRL B0OJ
Virgil Banowetz
| /. .
(/(/L%/ fgwﬂwlsjﬂt/a/—
Originator 7 Date
Steve Nicolay

. C. br 20,1957

Re#fiewer Date

TABLE OF CONTENTS
1. INEOAUCHON ..ttt ssssssasss e assssstasasasssssesases 3
1.1 BaCKGTOUNAouurtcrcrnctincninetnniseteinessns s snensssnssseasesssssssssnsessssenssssssssersrsssens 3
1.2 Purpose of StP/T StUAYcccvviriiiiniimnsicisiinisissssessissiiusssanssssssssssssssssssssass 5
L3 500D ottt s s b s bes 5
1.4 Test Evaluation APProach ... 5
1.5 RepOrt OVEIVIEW ...ttt iniisissssssessssssssasnsssnsesssesssssesssssssesens 6
2. Applicable DOCUINENLScouvveuirniiininiisirenscsisiissssisesesasisensssessssssssassssssssasscssss 8
3. Tool Assessment ENVITONINENLccvviirviieimnimsensinincesnnsiisissanisessesismsssissssmsesss 9
3.1 Evaluation Exercise ENVIFONMENL..........cccevererrerrsreersrereseesssesnssesessessssssessssssesesns 9
3.2 Display User iNTerfaceccoverivceieririncrcnciimunniciisenescsssssiasssssesessesssssssssassescsens 9
3.3. CASE Tools Evaluated.........uiiiincrniniineninnsinencsessninsssssessmsesenss 9
3.4. SSA Project EVAlUAtION ...ttt ssessssssssessssssanes 10
4. StP/T EXAMPIES ...cuvinrrrrercecsicttniscscstsissiscasessinsssssssssssssnsssessssssssssesssssssenss 11
4.1 StP/T Example 1, Calculate Weight Computer Experimentcccccovuueuneee. 11
4.2 StP/T Example 2, ASQ-212 Tactical Mission Software Experiment............ 11
5. Evaluation FINAINGS ...ttt ssescnnsnassns 12
5.1 CASE Tool Product Continuity ISSUESc.coveveerccisnnisnnnnivccinsccsensansenes 12
5.2 ASQ-212 Project FINAINGSccouiirviiniirencrciiinnnnisisensnsseserisesssmsssssasesssssses 12
5.3 StP Diagram Changes Needed to SUPPOTt T........covmicriiniecnenncninciiisiseniain. 13
6. T Tool Problems and Limitations ... 15
6.1 Domain Increment Limitation ... 15
6.2 Inability to Generate Appropriate Test Cases for Characteristic Data............ 15
6.3 Inability to Generate Appropriate Test Cases for Array Data.ccccoereruenes 16
6.4 Miscellaneous T Problems ... 16
7. StP/Extract LIMIAtON ..ot sssesssisessesessesssssasesseasesssss 17
7.1 No Non-primitive Extractions for Processesceeceerverenseuserersersessrscnsssssscrenans 17
7.2 StP/EXTRACT 4.2D Type Definition EITOr ...t 17
8. StP Problems Encountered.......... i 19
9. Training Requirements for StP/Extract and StP/Tcccvvveeerervcnnnrcuenrecnnnnee 20
10. Test Documentation Preparation with StP/T Results.cccceuveeuveeeenccrrnncsen. 21
11. SSA Software Tools for the FUUTecccveemcevciieriennsinrcerccccnisesnesenes 22
i

12. Conclusions And Recommendationsccccceeeeieminenrirerenerennnenersssnssssscssesens
12.2 T Tool Evaluation CONCIUSIONScccoueiiuiuireerersmsesseessasenssssmsensssessnsessescsssesse
12.2.1 T Stand Alone APPLCAtONccocvvuirreiiiserirsesinersesesirersssssnsessssssssesessssssssssnss
12.2.2 StP/T Adaptation to Existing Programs...........cuusmessncessmseesessnsesseones
12.2.3 StP/T Application for New Programsccemeiensessnssensesesessnscsenns
12.3 Overall RecOmmendationscevmmmessmsmesinensesssssssssesessssssssssssssssssasassesens
13, ACTONYINS cocereierinrerererererststssenensncresssssessssssssisssssesssssssssssssessssssssssssassssssssssossnssssans

APPENDICES

APPENDIX A. StP/Extract/T Installation, Setup, and Operation Procedures
APPENDIX B. Diagnostic Messages, Errors and Countermeasures
APPENDIX C. Questions and Answer Tips

APPENDIX D. Weight Computer Program Illustrations

APPENDIX E. ASQ-212 Samples

APPENDIX F. Documentation Errors

ii

B-1
C-1
D-1
E-1
E-1

Figure 1-1.

Figure 11-1.
Figure 12-1.
Figure A3-1.
Figure A3-2.
Figure D1-1.
Figure D1-2.
Figure D1-3.
Figure D14.

Figure D1-5.
Figure D2-1.
Figure D2-2.
Figure D3-1.
Figure D3-2.
Figure D4-1.
Figure D4-2.
Figure D4-3.
Figure D44.
Figure D4-5.
Figure D4-6.
Figure D4-7.
Figure D4-8.

Figure E1-1.
Figure E1-2.
Figure E1-3.
Figure E14.
Figure E1-5.

Table D4-1.
Table D5-1.
Table E2-1.

FIGURES
StP/Extract/T Data FIOWcvnirirnnmininnseieiniensssessessssssssssens 4
StP Product SUPPOTt fOr T ...uuuueeveiiteirnnnnsenscsssnssesesenesserssessssessns 23
Weaknesses in StP/T Software Developmentccoevvvreevensersennes 25
Example of ToolInfo file for StP/EXIIactcevuennsismesenscsennes A-5
Example of TCONFIG file fOr Tcovmviruvercrncnnsernncncsenessasssnsnns A-6
Example of a simple context diagramcccevevneienrnennensscnsnnnn. D-3
Verbose 0 level Data Flow Diagram (DFD) decomposition D4
Terse 0 level DFD decOMPOSIHONccovereerenncrscsmnsnncsenecseiserssasense D5
Preferred 0 level DFD decompositioncceeeiienccnieneescncnnes D6
LeVEl 2 DFD ..oovoovcmrreesmnnseessmmssessssesesssssssssssssssssssssessssssssssssssssssssses D9
Context Diagram Data DSD ... D-13
Local Data DSD ...t esesiinsssssnsrsassssesones D-16
Top level System Design Structure Chart Diagram (SCD) D-19
Second level System Design SCDcccvveeirvmnicneneniinisnsncnsnenns D-21
System Analysis SDF for volume computerccocuerveernneinnnns D-24
System Analysis SDF for mass COMPULETc.ccovuevreveernisereransesens D-25
System Analysis SDF for weight computercccocoeeeveverenrcrennnee, D-26
System Design SDF for top level weight computer (Main) D-27
System Design SDF for volume computerccceeveveververeresinncnnns D-28
System Design SDF for mid level weight computer D-29
System Design SDF for mass COMPULETccvureerrrersnreresrnsserasnnenne D-30
System Design SDF for low level weight computer (by gravity) . D-31
Context Diagram for Navigation Steeringcocveevnceresencivenennns E-3
LeVel 0 DFD ...t sesssesse s snssssssssssssssnsosas E4
LeVel 1 DFD ..iieisenisisnsssssssssssssssssssssssssssssonssssssns E5
Data Structure Diagrams for the components of process 1.1 E-7
SDF file for process 1.1 (Determine Steering Mode)ccccnuunn. E-27
TABLES
Figures for listings of SDF files for SA and SDccecveuuruenee. D-23
T output files for weight computeroeeveeiiinvinnicicncinens D-33
T output files for a Navigation-Steering Processcocecvvuveurinaen E-28
iil

EXECUTIVE SUMMARY

This report is the result of a technical evaluation of an automated test case generation
tool, T Tool (“T”). The focus is on using T for Navy Software Support Activities (SS5As).

T is used to generate test cases based on input and output specifications derived from
code, design, or even higher level software requirements. When T is supported by a
CASE too], the input and output specifications of the software under test are extracted by
this tool which selects key information (units, range of values, etc.) about each process
(requirement) or module (design, code) and creates a unique Software Description File
(SDF). The SDF has all the information required to initially or regressively test each
program element. T cannot éxecute tests, so after the SDF has been created, conduct of
the tests can be performed using traditional application testbed/unit test methods or,
ideally, using an automatic text execution tool which is compatible with the SDF output.

The Navy's P-3 Update III ASQ-212 program was used as a testbed for evaluating T
primarily because the ASQ-212 program developer used a CASE tool which is integrated
with T. The Integrated Development Environments, Inc. (IDE), Software Through Pictures
(StP) Structured Engineering CASE tool was used for the requirements phase of the
development. This product is one of at least two CASE tools presently integrated with T.

The T evaluation initially focused on evaluating its potential use as part of an on going
SSA effort like the ASQ-212 program. Attempts were made to utilize T within the StP
Structured Environment (SE) products used during the ASQ-212 requirements phase,
followed by experiments using T with the StP Ada Design Environment (ADE) product
set utilized during the design phase of the program.

Additionally, to determine the effectiveness of using T when integrated at the start of a
new project, a sample program was developed which utilized the StP SE product line for
the requirements (Structured Analysis (StP/SA)) and design (Structured Design
(StP/SD)) phases. StP diagrams were produced with all T requirements included from
the initiation of this sample program.

The results of this study yielded several important findings.

1. With the correct inputs, T performed as promised. However, in order for new
programs to benefit from test tools like T, a commitment needs to made from

program startup to utilize an integrated set of CASE tools which supports T.
Without this foresight, there are two possible problems:

e The CASE tool may not generate the inputs required to run T, or

* Different CASE tools may be used for different parts of the life cycle (for
example, requirements analysis and design). This approach would
likely result in invalid test cases being generated by T.

The ASQ-212 project exhibited both of the above problems, neither of which
was detrimental to ASQ-212 software itself, but they did limit the test
readiness of the ASQ-212 as well as this evaluation of T. Unfortunately, one
or both of these conditions is probably present on most Navy SSA programs.
While manually “reverse engineering” CASE tool data to produce outputs
which properly run on T is achievable, this extra effort can be very time
consuming and costly.

i

i

1

i

i

l New automated reverse engineering tools in the near future may alleviate this
problem. These tools are being designed to take existing code which contains
the necessary data specifications to support automated test case generation

l and regenerate a design baseline. This capability, along with the creation of
new automated test execution tools which can operate on the T’s test case

l outputs, would allow an SSA's software test program to be more efficient
and achieve a greater level of product quality and reliability through more

l repeatable regression tests.

]

1

i

1

i

1

i

2. Automated test case generation tools cannot totally replace the current
methods used to identify proper software test cases. Test tool limitations
when dealing with some unique test requirements such as tests of data arrays
or characteristic data will still require some level of manual test case
definition. However, these manual test cases should account for only a small
portion of the overall software test cases defined for a typical, large software
program like ASQ-212.

In the absence of additional studies which validate fully integrated approaches to
software development and testing, the procurement of the T Tool to generate test cases
for an established Navy SSA can be recommended, but only with the above reservations.

1. INTRODUCTION

1.1 Background

This study was conducted by the Naval Air Warfare Center Aircraft Division
(NAWCADWAR) to evaluate the Interactive Development Environments (IDE)
software product known as the T tool. The evaluation was initiated at the request of
NAVAIRSYSCOM AIR-54661 to determine the applicability of these tools to the SSA
environment. The conduct of the evaluation spanned the time period from March 1994
through September 1994. A "Plan for Testing the T tool for SSA" was presented to and
approved by AIR-54661 in April, 1994.

The T tool is a specification based test case generation tool. This means that a
specification which describes the inputs and outputs of a process or module is the only
basis for producing the test cases. T was previously evaluated by Christine Youngblut
of the Institute for Defense Analysis (item h in Applicable Documents) who reported
that StP/T is currently being used by various government organizations including the
Naval Avionics Center, the Jet Propulsion Laboratories, Naval Coastal Systems Center
and US. Army Forts Monmouth and Sill.

As illustrated in Figure 1-1, T can be used as a stand alone operation or as a product
more tightly integrated into the overall software development process. For the T stand
alone operation, the user types or edits specification data into a unique Software
Description File (SDF) for input to the T tool. This SDF is a text file formatted in
Semantic Transfer Language (STL), a superset of the IEEE 1175 standard language for
software specifications. In modern Ada software developments which employ
Computer Aided Software Engineering (CASE) tools such as Software Through Pictures
(5tP) for the Structured Environment (SE), StP supporting the Object Management
Technique (StP/OMT), or Teamwork, a T interface is used to "Extract" the CASE tools
own internal specification data and produce the SDF for T.

The CASE tool selected for this T tool evaluation was StP/SE (Structured
Environment). StP/SE is currently being used for the requirements portion of the
Navy's P3 Update III AN/ASQ-212 operational software development at
NAWCADWAR. The SE product line of StP is also known as StP/STRAND and
StP/ISE (Integrated Structured Environment). StP/SE can be used for both
requirements analysis and design and has its "Extract" capability embedded in the StP
graphical user interface for both functions. The StP Extract capability produces the SDF
which is used by T to create test cases. The actual execution of test cases is traditionally
implemented by a test harness, i.e, application testbed, and may include automated test
execution tools to expedite repetitive and regression tests.

Stand Alone Operation

CASE Tool Integration

Software Specifications
analysis, design or code

StP/SE

Prepared Diagrams

Manual Conversion

Software Description File

(IEEE 1175+ format)

AT W T W L L U W W R L N R T
;;;;;;;;;;;;;;;

A YA A WA YA WA Y
L. L

''''''''''''''

WRARARARARRRARRARARR RN

StP/Extract

Automatic Generation

Test execution tool

Test Harness

Application
software

Test
Reports

Figure 1-1. T Tool Test Data Flow

1.2 Purpose of StP/T Stud

An efficient and effective test process is essential to assure software quality over the
operational software life cycle. Much of SSA maintenance involves regression testing.
Tools which make these tests faster, more thorough, more repeatable, and less costly,
would be highly desirable for any SSA organization. The purpose of this study is to
evaluate the capabilities of T and its potential utilization by Navy Fleet Software
Support Activities (SSAs) to maintain Navy operational software.

1.3 Scope

This study offers a limited evaluation of the T tool capabilities, its ease of use, and
adaptability within an existing SSA. Four evaluation experiments were conducted to

evaluate the StP/T tool:

a. T as a stand alone tool with the SDF data created manually from specifications
defined in the ASQ-212 Software Requirements Specification (SRS). This
experiment was performed to assess the general capabilities of T and the effort
required to manually create the SDF.

l b. T supported by StP for SDF data which was created automatically from Systems
Analysis (SA) diagrams recreated from the ASQ-212 SRS and enhanced to test
' ready form. This experiment was performed to evaluate the automatic SDF

creation features of the StP/Extract interface with T.

c. T supported by StP for SDF data which was created automatically from Systems
Analysis (SA) diagrams from the actual ASQ-212 StP-based SRS diagrams
enhanced to test ready form. This experiment was performed to evaluate the
feasibility of using T as part of an established software product baseline.

d. T supported by StP for SDF data which was created automatically from Systems
Design (SD) diagrams . This experiment was conducted to illustrate how well SD

would support T.

1.4 Test Evaluation Approach

This study was approached in four phases:

a. Planning. The evaluator prepared a "Plan for Testing the T tool for SSA" which
outlined the objectives and schedule.

b. Training. A one week course was purchased by NAWCADWAR to train key
personnel on T and StP/SE.

¢. T Tool Evaluation. The initial approach to evaluating the T tool focused on
utilizing the current ASQ-212 software baseline which employs StP products

within their requirements analysis and software design process. The goal was to
determine the T tool compatibility with the current StP based software and its
potential use within the current ASQ-212 software life cycle process. When
incompatibilities were encountered with creating the T tool SDF data directly
from the ASQ-212 requirements and/or design data, the evaluation effort was
redirected toward evaluating the tool based on a software program "model"
specifically designed for the purpose of assessing the T tool capabilities to
support automated test case generation.

d. Report Evaluation Results. The preparation and review of this document.
1.5 Report Overview |
This evaluation report is orgamzed into the following sections:

Section 1 provides the introduction to this report .

Section 2 lists the documents used and/or referenced for this study.

Section 3 describes the laboratory evaluation environment.

Section 4 describes the two main program examples used to conduct the StP/T
study.

Section 5 summarizes the findings from the exercises of section 4.

Section 6 describes the problems encountered with T in the stand alone mode of
operation.

Section 7 describes the problems encountered with T when integrated with StP.
Section 8 describes the problems encountered with StP independent of T.

Section 9 summarizes the training recommended for using T as part of the software
test process.

Section 10 summarizes the test report generation capabilities of T.

Section 11 describes the T interface test tools projected to become available in the
near future.

Section 12 presents the conclusions and recommendations from this study.

Section 13 offers a list of acronyms associated with this study report.

The appendices provide information to aide any ongoing evaluation of StP/Extract/T.
They include procedures used for this study, problems encountered and their solution
or work around, diagnostic aids, etc. as listed below:

Appendix A describes the installation, setup, and operation procedures for the
software evaluated.

Appendix B provides diagnostic messages for errors and problems encountered
in this study. Each item includes the appropriate advice and/or work around.

Appendix C is a list of tips in question and answer format for the operation of T
and StP/Extract .

Appendix D documents the weight computer program experiment.

Appendix E documents the ASQ-212 sample experiment used for this study.

Appendix F lists IDE documentation errors encountered in this study.

2. APPLICABLE DOCUMENTS

a. T Users Guide, Interactive Development Environments (IDE)

b. StP ISE 4.2D Users Guide, IDE

c. StP ISE 4.2D Reference Manual, IDE

d. Automated Software Testing, Version 0.6, IDE

Application Note: Software through Pictures (StP) and T Integration, IDE

©

f. T Installation Guide, Instailing T3.1 - Sun SPARC]

. StP ISE Customizing the Environment , IDE

aq

h. An Examination of Selected Software Testing Tools: 1992, Christine Youngblut, IDA
Paper P-2769, Institute for Defense Analysis, December, 1992

i. Strategies for Real-Time System Specification, Hatley and Pirbhai, Dorset House,
1988

j Designing Large Real-Time Systems with Ada, Nielsen and Shumate, McGraw-Hill,
1988.

k. "Plan for Testing the T Tool for SSA", NAWCADWAR report, April, 1994.

3. TOOL ASSESSMENT ENVIRONMENT
3.1 Evaluation Exercise Environment

The StP/T evaluation exercises were performed on a Sun4 processor running with the
SUN O6S 4.1.3_U1 operating system.

3.2 Display User interface

The display user interface was the Openlook window manager. The following two
display processors were used interchangeably at the NAWCADWAR VP Software
Production Facility (SPF) :

a. C shell on the Solaris operating system on SPARC station 10

b. C shell on X terminal display driven by a SUN OS 4.1.3_U1 operating system on
an IBM workstation.

3.3. CASE Tools Evaluated

The version of T evaluated in this study is T3.1. This tool has three functions:
e Tverify tests the SDF for errors.
* Tdefine generates the test cases.

* Tprepare formats the test cases for test execution.

Since test execution is not part of this study, only the first two above functions were
evaluated.

The version of StP which was compatible with T and was evaluated in this study was
the Integrated Structured Environment (ISE) version 4.2D . This product line is also
known as StP/SE and Structured Analysis and Design (STRAND). Only StP functions
relating to T were evaluated:

e Data Flow Diagram (DFD), the basis for Requirements/Systems Analysis (SA)
* Structure Chart Diagram (SCD), the basis for System Design (SD)
* Data Structure Diagram (DSD), supporting DFDs and SCDs

¢ Extract. This product is an interface utility embedded in the StP/SE graphical
user interface to create Software Description Files (SDFs).

F

3.4. SSA Project Evaluation

The Navy P-3 Update III ASQ-212 program was selected as the representative SSA
software project used to evaluate StP/SE and T. StP/SE was used by the ASQ-212
developer during the Systems Analysis phase for the purpose of preparing the Software
Requirements Specification (SRS). Instead of using the System Design (SD) feature of
the StP/SE for the design phase, another StP product, Ada Development Environment
(StP/ADE aka StP/OOSD/Ada) was used for the design effort. The StP/ADE was
used in lieu of StP/SE SD because (1) StP/ADE supports the generation of Ada
compilable data specifications which was an essential component of the Software
Design Document (SDD) and (2) ADE provided a more object oriented development
methodology than SD.

10

4. StP/T EXAMPLES

4.1 StP/T Example 1, Calculate Weight Computer Experiment

The purpose of the calculate weight computer program experiment was to demonstrate
a very simple end to end application of StP Structured Analysis, Structured Design,
StP/Extract, and T for test case generation. This demonstration of StP/T capability
allowed the evaluator to focus only on the tools since the application itself was trivial.
To use the Calculate Weight Computer program, the user must enter five numbers
(length, width, height, density, and gravity) and the system multiplies them and returns
their product, the weight of a rectangular solid object. To illustrate multiple levels of
diagrams, the multiplications are decomposed into components using intermediate data
with familiar names such as volume and mass. The diagrams, extracted SDF files, and T
results are shown in Appendix D.

The test cases generated were adequate to thoroughly exercise this simple model with
both normal and abnormal data. For this example, the data required to make the StP
diagrams test ready were not significantly more than that desired to do a complete unit
level specification design.

4.2 StP/T Example 2, ASQ-212 Tactical Mission Software Experiment.

The purpose of the ASQ-212 software experiment was to demonstrate how and under
what conditions T can be used to support testing of the current ASQ-212 software
baseline which was developed with StP/SE and StP/ADE without previous
consideration for the use of the T tool. The diagrams developed for the ASQ-212
software are of two types, (1) StP/SE Structured Analysis to support the Software
Requirements Specification (SRS) and (2) OOSD/Ada to support creation of the
Software Design Document (SDD). A few SE Structured Design diagrams also support
the SDD but were not adequate to support T. The SRS and SDD are document
specifications supporting the Department of Defense (DoD) 2167A standard. Sample
Systems Analysis diagrams supporting the ASQ-212 navigation model experiment, the
extracted SDF files, and the T results are shown in Appendix E.

The test cases generated were adequate to thoroughly exercise this unit with both
normal and abnormal data. Input types for the module included data records,
enumeration types, and boolean types. There were no input data arrays for this module.
The data required to make the StP diagrams test ready was significantly more than that
provided by the system analysis diagrams.

11

5. EVALUATION FINDINGS

5.1 CASE Tool Product Continuity Issues

When the StP Structured Design (SD) process follows Structured Analysis (SA), it is
generally desirable to reuse the Data Structure Diagrams (DSDs) from SA for the SD.
This provides some continuity between requirements and design. Similarly and more
significantly, the Ada specifications supporting the Ada code should be based on the
design DSDs to permit and encourage compatibility of StP based test cases with the
code. In the absence of this continuity, high level specification based testing will have
only limited utility. The present StP/T tools have a number of weaknesses which
contribute to the SA/SD/Code continuity problem .

a. A design tool which incorporates data structure diagrams like StP should use these
data structures to generate code for data specifications. However, a flaw in the
StP/SE SD process makes it unusable for the Ada code generation. Data
specifications which are generated by SD are incomplete and, as a result, cannot be
successfully compiled. The continuity from StP design to the actual Ada code is lost
in StP/SE due to this incomplete SD capability. The code specifications are likely to
differ from the design, thus preventing the generation of meaningful StP/T test
cases.

b. The StP Ada Development Environment (ADE) product line is a tool specifically
created for Ada design. However, it is incompatible with StP/SE due to the fact that
ADE uses a different methodology known as Object Oriented Structured Design
(OOSD). When StP/SE SA is used for requirements analysis and StP/ADE is used
for the design, the continuity from requirements to design is lost. This discontinuity
stems from the incompatibility with the Data Structure Diagrams between the two
StP product lines. When ADE is used, T cannot generate valid CASE based test
cases. Specifically inhibited are

(1) requirements based testing (the code is unlikely to match the requirements data),
and
(2) design based testing (StP/ADE has no T interface).

5.2 ASQ-212 Project Findings

The use of the Navy ASQ-212 project as a test baseline for evaluating T illustrates some
problems which are probably typical of any Navy SSA which did not consider the use
of automated test tools as part of the overall test program from project conception.

As part of the requirements based testing experiment using T, the SRS and SDD for the
Navigation Steering component were compared to determine compatibility. At the time
of this tool evaluation, the ASQ-212 program is nearing the formal Navy test phase.

As often encountered with many large, complex software developments, the
requirement and design documentation has lagged behind the code. Also, to reduce
cost and technical risk, the DoD documentation standards were tailored to eliminate

12

data duplication and simplify the overall configuration management effort. At the time
of this T tool evaluation, the SDD had no Data Structure (missing from Appendix E). It
was also missing from the electronic version of the diagrams. Furthermore, the data
names used in the SDD diagrams have little resemblance to the data names in the data
flow diagrams used for the SRS. Because of this lack of continuity, attempting to use T
for StP SA /requirements based testing was found to be unproductive. Section 11 offers
a discussion of some possible test alternatives for using T following after the initial
initial program development phase.

5.3 StP Diagram Changes Needed to Support T

The StP diagrams from the current ASQ-212 program would require considerable
changes to support automated StP/T based testing. In the Navigation module
experiment, the System Analysis diagrams required extensive changes in the following
areas to make them T tool comipatible:

a. Corrections for diagram error detected by StP

b. Dataitem type revisions in Data Structure Diagrams (DSD) annotations.
c¢. Datatype definition additions and revisions in DSD annotations

d. DSD revisions of literal types to selection/enumeration diagrams.

In a typical software development effort, errors and inconsistencies in StP diagrams
produced early in a project are likely to remain well into the test preparation stage
which occurs later in the development. Even though StP detects some inconsistencies,
or incompleteness, these errors may not get resolved prior to the test preparation

phase. The current ASQ-212 Tactical Mission Software (TMS) Navigation SA diagrams
have some errors detected by the StP "check data dictionary” function. The resolution of
these errors may or may not be necessary to produce test cases, but the errors suggest
that the errant diagrams are incomplete or out of date. At the very least, the presense
of these errors raises questions about the applicability of testing at this stage.

Primitive dataitems (those not decomposed into components) must be properly typed in
the DSD annotations or they will be flagged as undefined by StP. However, T requires
that only specific types be used. These types must be either (1) a datatype defined in a
Data Structure Diagram (DSD) or (2) one of the datatypes defined in an include file
such as stp.std or tsdl.std (which already have the values/domain defined). In many
cases the mapping of types provided to the correct types will not be easy. For example,
in the ASQ-212 SA diagrams, the type "numeric" is often used. For T to operate
properly from extracted data, these "numeric" types must be replaced by the true type
based on the actual design/code. These new types must be defined in the DSDs or in
text files included by the SDF.

Datatypes defined in the diagrams (or in a user defined include file similar to stp.std)

for the primitive dataitems must include the value(s) or domain (Minimum, Maximum,
and Increment) needed for testing. The domain values are used to generate selections

13

for values for a numeric (integer or real) dataitem. Also, the base type for these
datatypes is restricted by T to integer, real, boolean, string, or character. These base
type names must be in lower case to be recognized by the StP/Extract program.

When the type "literal” as used in an ASQ-212 SA diagram, it must typically be changed
to a selection structure with the values provided for the literal dataitem used to name
the selections. This supports the Ada enumeration type which is used by StP/T and
Ada. Also some uses of the string and literal types might need to be changed to boolean
types depending on the code.

The above special typing has not, for the most part, been required of the developer for
creating the ASQ-212 program SA and SD StP diagrams, thus, it will not in most cases
be available for T utilization. To date, testing has been separated from the requirements
and design activities which utilize the StP tool set. A code tester wishing to use the
diagrams for generation of test cases with T currently has to manually enter this test
data into the diagrams based on a review of the code.

It is anticipated that the ASQ-212 SA diagram documentation will "catch up" to the
actual code at final delivery. Even so, if T were to be utilized for requirements based
testing in future revisions of this program, a conscious effort would have to be made to
“raise" the level of the data specifications in the SA diagrams to a T tool compatible
state.

14

6. T TOOL PROBLEMS AND LIMITATIONS

During the evaluation of T using the Calculate Weight and ASQ-212 software
experiments, several shortcomings were identified with StP/T which affected the
generation of test cases. These limitations are provided in the following paragraphs.

6.1 Domain Increment Limitation

The domain specification is part of the data input specification used by T for picking
sample integer or real data for test cases. It consists of a minimum, maximum, and
increment. However, the domain increment specification may not be adequate. Itis
used by T to generate test cases with values for items which are above and below the
minimum and maximum by this amount. However, by using the same increment
about both minimum and maximum, we may not produce the best debug cases. If the
maximum is very large, say 1E10, and the increment is 1, an increment of 1 part per
1E10 about the maximum may be too small to produce a unique debug result (different
from the maximum case). This same increment applied about a small minimum (say 0)
may produce a debug result too different from the minimum result. Separate low and
high increments should be allowed in T and StP to produce acceptable debug test cases.
This recommendation is being considered by the T tool developer, IDE.

6.2 Inability to Generate Appropriate Test Cases for Characteristic Data

Characteristic data are special values which are needed for proper testing. Acoustic
signature characteristics, for example, must be tested with a set of comparison data
which both matches and fails to match the arrays of records of characteristics in a
complex pattern. T, however, cannot produce test cases for characteristic data except
for the simple case where the data item is essentially an enumeration variable with
characteristic values provided. Here, individual values of variables are defined for
testing purposes within the SDF. However, this does not assure that the values selected
will be combined with other variables in a desired characteristic way for testing. The
means for dealing with this problem are as follows:

¢ Manually add test cases to supplement the automatic test cases for characteristic
data.

¢ Represent the characteristic data in arrays via the test harness as described in the
paragraph below.

¢ The TSDL syntax could be enhanced by the vendor to permit both "has value
range" and "has values" clauses for the same variable. This would permit
independent characteristic values along with a domain specified range of values
for the same variable type. However, it would not test characteristic data
combinations .

15

6.3 Inability to Generate Appropriate Test Cases for Array Data.

Like the characteristic data limitation above, T cannot generate adequate test cases to
represent Ada data arrays. Data to represent these lists of data must be prepared
manually. These supplementary array data will need to be incorporated into the test
harness for test execution. No tool enhancement is anticipated for this limitation.

6.4 Miscellaneous T Problems

There is no index section to the T Users Guide, no annotated list of T produced error
messages, and no T Reference Manual. Also, there is no documented list of keywords
(types etc.) for the T Software Description Language (TSDL). In the absence of the list
of keywords, the StP user may use these keywords for data names. This can confuse the
tester or at least be an annoyance since it causes nuisance warning messages when
Tverify is run. -

Diagnosis of problems is somewhat disorderly due to lack of documentation, especially

a good index. The support service at IDE is very helpful and typically responds to
email questions within a few days.

16

7. StP/EXTRACT LIMITATION

During this study, several limitations were discovered in using the StP/Extract tool to
create the SDF required for T execution. The below paragraphs discuss these
limitations.

7.1 No Non-primitive Extractions for Processes

The 4.2D version of StP does not permit extraction of SDF files for DFD processes (SA)
which are not primitive. Test cases are only produced for the lowest level of
requirement process. For example, the volume/density/gravity multiplier process in
Figure D1-4 will not have an extracted SDF since it is not primitive. In Figure D1-5, this
process is decomposed into two component processes which can have SDFs extracted.
Higher level processes (including the entire model) cannot have SDFs extracted and
therefore are not testable without manual preparation of an SDF. This defect is
corrected in StP version 5.0.

7.2 StP/EXTRACT 4.2D Type Definition Error

The TSDL language provides for the use of text files separate from the SDF for the
purpose of defining commonly used types for T dataitems. This is done by an
INCLUDE statement within the SDF. The files stp.std and tsdl.std are examples which
are typically included. These files are provided as part of the T package. For the stand
alone T operation, the include statements in the SDF can be written to use type
definition files such as these. However, the extracted SDF files from StP version 4.2D
have an error which makes use of these type/include files cumbersome. Only stp.std
defined types are usable without a manual edit of the extracted SDF file. For the 4.2D
extract, a type in a user defined file or tsdl.std is usable in the dataitem annotations
only if you manually edit the extracted SDF file to eliminate the spurious "undefined"
statement associated with this type. This edit is necessary due to a 4.2D extraction
program bug. Only StP DSD defined types, stp.std defined types, and the five base
types described in the Application Notes are recognized by StP Extract. The use of any
other type for a dataitem generates an "undefined" statement whether the type (1) is
defined in tsdl.std, (2) is defined in a user defined include file, (3) is misspelled, or (4)
is otherwise undefined.

For an include file defined type (cases 1 or 2), the spurious statement in the SDF causes
an error when running Tverify. Since the type is defined in an included file, it results in
a duplication error (two specifications for the type, one saying it is undefined and one
defining it).

T will not create test cases of data items using a misspelled/undefined type (cases 3 and
4). The presence of the string "undefined" in the SDF is an error flag... an indicator of an
action item.

17

Aside form the above StP/Extract bug, it should be noted that the use of a customized
include file requires only a simple edit of the extracted SDF file. Initially, the extracted
SDF only includes the delivered stp.std which in turn includes tsdl.std.

According to Bob Poston at IDE (the T creator), the problem has been fixed for StP/SE
5.0. Include/type files like stp.std can be created or modified and types therein are not
flagged as undefined by the extraction program. For the 4.2D user, application types
are best defined in the StP diagrams rather than in include/type files.

18

8. StP PROBLEMS ENCOUNTERED

There is an occasional problem with the project and system/model function of StP. For
illustration, the StP/T application software package includes an elevator example
which has a problem loading. StP generates an error when it is brought up with the
defaults set as follows:

system=elevator
projdir=/tools/cots/sunos.4.1.x/T3.1/t_int

The error is "Project not found".

Resolution: Unresolved. Problem has not appeared in other areas. Reported to IDE
Tech Support 8/25/94.

19

9. TRAINING REQUIREMENTS FOR StP/EXTRACT AND StP/T

The recommended training for using StP and T has typically been one to two weeks of
dedicated on-site classes. The costs for this is in the order of $10,000 per week for a class
of up to four people, not counting the cost of the student's time. However, after
someone is trained at a site, the use of these personnel and available documentation is
sufficient to train others on site. Formal in-house training might be limited to one hour
per day for a month supplemented by hands on experience.

The most difficult part of learning T is the language of the SDF, the T Software
Description Language (TSDL). The easiest way to learn TSDL is to use StP/SE to
prepare a sample program and generate the SDF. The TSDL easily becomes an
understandable language representing the software process or module specifications.

20

10. TEST DOCUMENTATION PREPARATION WITH StP/T RESULTS.

Test documentation under DOD-STD-2167A which can be provided by StP/T includes
the Software Development Files (SDFs) and portions of the Software Test Descriptions
(STD) and the Software Test Report (STR). The SDFs document the Computer Software
Unit (CSU) tests. These SDFs can be produced by the input and output of StP/T and
the test harness . The STD documents the Formal Qualification Tests (FQT) of the
Computer Software Components (CSC) and the Computer Software Configuration Item
(CSCI). Much of the STD report can be created by the Tdesign report file, samples.rpt,
generated for each design module designated as the CSCI or a CSC. This report lists
sample values for each variable for a test unit. In this way samples.rpt encapsulates the
totality of the test cases without actually itemizing them individually.

To supplement the test cases for special characteristic data, the sample values produced
by T can be controlled by editing the T input. For T stand alone operation, edit the
Software Description File. The samples associated with a numeric datatype can be
defined by entering values in a "has values ...,..." clause for that datatype. Thisis
appropriate when specific (characteristic) values within the range are significant. The
"has value {minimum, maximum, resolution}" clause is used when there are no
characteristic values to test and the full range of values should control the samples. For
StP/T testing, the above can be accomplished by using the "Value"” annotation instead
of "Domain" annotation for the datatype in the StP Data Structure diagrams.

To supplement the test cases to provide a variation on array data, the tester must
provide auxiliary data (not provided by T) to support the test harness. This input will
supplement the SDFs and the STD.

In addition to the above, the STD will need to be supported (electronically only for large
systems) by the individual test cases and their expected results using another Tdesign
report file , summary.rpt. The expected results must be manually edited into this file
since there is no automaton for expected values.

The STR can be automated to some extent by using the Tdesign report file,
summary.rpt, supplemented by test execution reports and differencing reports.

21

11. SSA SOFTWARE TOOLS FOR THE FUTURE

Upgrades to both T and StP are now available. The features of the new 4.0 T version are
reportedly easier to use than the present version (T3.1). The StP upgrade from 4.2D to
5.0 has resolved the problem described in Section 7.2. The NAWCADWAR has plans to
upgrade StP to 5.0 early in 1995.

Projecting software tool development for the next year or so, IDE has three approaches
under development or consideration to provide automated means for using T to test
Ada code. Figure 11-1 shows the available (solid line) and potential (dashed line)
interfaces connecting Ada code with T. One interface effort is currently under
development by IDE and is represented by the heavy dashed line. Excluding the
manual and non IDE interfaces, the potential developments connecting Ada code with
T are as follows:

a. The Ada based Design Approach for Real Time Systems (ADARTS), a product
of the Software Productivity Consortium (SPC), and IDE are considering a
capability to reverse engineer Ada code to StP/SE diagrams (Presently the IDE
reverse engineering capability produces only StP/ADE, i.e., OOSD diagrams).
Since SE format is compatible with T, test cases could be generated. ADARTS
is currently under development as a methodology and protocol for enhancing
software development productivity.

b. IDE is also considering a more direct (extract) T interface from StP/ADE design
diagrams. StP/ADE would extract SDF files from these diagrams for use by T
to generate test cases. (similar to the present StP/SE/Extract).

c. Another recently released StP product line is Object Modeling Techniques
(OMT). StP/OMT supports a very popular design methodology known as
Object Oriented Modeling. It has recently been given a T interface (Extract).
The facility to reverse engineer from Ada code is under development and is
expected to be released in mid 1995. OMT is expected to replace OOSD as a
design methodology on new projects. This product was not purchased for
evaluation, but is advertised to produce a link between Ada code and the T
tool.

22

Ada
7 code |»

Y

StP/SE

StP/ADE
(OOSD/Ada)

StP/OMT

bl

v

Interfaces evaluated
in StP/T study \

'T

Figure 11-1 StP Product Support for T

23

12. CONCLUSIONS AND RECOMMENDATIONS

12.1 The Need for Vertical Integration

The degree of vertical integration between the requirements, design, and code phases
will significantly effect the degree of data correspondence between them and the
usability of both requirements based and design based test cases. Where the code units
do not correspond to the requirement processes, i.e, Data Flow Diagrams (DFDs),
requirements based test cases will be nonfunctional. Where the code units do not
correspond to the design modules, i.e., Structure Chart Diagrams (SCDs), design based
test cases will be nonfunctional . Where the data structures used by the code are not
based on the StP Data Structure Diagrams (DSDs), all StP/Extract based test cases
generated from these diagrams will be nonfunctional .

Automatic specification generation is a desirable StP feature which can lead to (or at
least encourage) this data correspondence between design and code. The generated
data specifications from the DSDs defined by StP should be compileable and usable for
the code effort. StP/SE does NOT generate compileable Ada specifications.

Figure 12-1 illustrates the critical interfaces in a typical StP/SE development under the
2167A standard. The traditional outputs of the Systems Analysis and System Design
phases are documents, specifically the Software Requirements Specification (SRS) and
the System Design Document (SDD), respectively. If a software development program
is to benefit from the utility of test tools like T, this is no longer sufficient. A vertically
integrated approach is essential to assure test tool compatibilities and efficient data
reuse within the project.

The StP Data Structure Editor has a specification generation facility which creates files
to represent the data specification. However, the resulting Ada specifications are
incomplete and not compileable. Also, one might expect that the minimum and
maximum in the domain specifications used for testing could also be used for the type
declarations in the Ada specification. This, however, is not the case for the current
version 4.2D of StP. Since the domain data is not usable for anything but testing, one
can reasonably expect that this test information will only be incorporated into the
diagram by the developer if the developer plans to use T for his own internal testing or
if contractually required.

The issue of SA (or even SD) inadequacy due to dissimilar code is expected to be far
from unique to the ASQ-212 program . For StP/T to be useful, a discipline will need to
be followed to assure StP data sufficient for generation of automated test data. The
most sensible source for StP/T data is the design diagrams since these are a big step
closer to the code which will be tested. The maintenance of design processes (Structure
Chart Diagrams and Data Flow Diagrams) to correspond to code throughout the life
cycle is important for both testing and software maintenance.

24

StP/Extract

Requirement Analysis

P/SE SA .
SP/SESA) - - =l P /eesD)

*1
J

*3

l
SRS 1 2
Y

Ada

SDD
specs

Code

-]

SDF

cases

Testbed /Test Execution Tool

Key Interface Considerations

*] If the design tool used is not compatible with the analysis tool, the

requirements will not be testable. (5tP/SE vs 5tP/ADE)

*2 The StP/SE SD tool does not generate compilable Ada specs. As a result,
the data specs for SD have limited relevance except for testing. They will
typically be omitted or at least delayed. If present, they will probably deviate
from the code specifications since they are developed somewhat independently.
If omitted or deviant from the code, the design will not be testable.

*3 If the design tool is not compatible with the T Tool, the design will not be

testable via the T tool. (StP/ADE)

Figure 12-1. Critical Test Tool Interfaces

25

The maintenance of requirement processes (Data Flow Diagrams) ONLY to correspond
to design/code throughout the life cycle may also be important. In Strategies for
Real-Time System Specification, Hatley and Pirbhai stress the importance of iterative
development throughout the life cycle. The requirements are not finished when the
design phase starts. With the arrival of modern software test tools, it is essential to
reduce the gap between the requirements and design baselines throughout the code
evolution phase.

12.2 T Tool Evaluation Conclusions

12.2.1 T Stand Alone Application

The use of T in the stand alone operation has merit for unit testing, CSC testing, CSCI
testing, and integration testing, even though its limitations in dealing with arrays, the
increment problem, and characteristic data will require case by case resolution at the
test execution level. The T Software Description Language (TSDL) could originate from
the design or the Ada specification code. Data, procedures, and functions could be
taken from specifications and edited into TSDL form to build the SDF file manually.
This method has been used successfully by the Longbow Guidance Section Test Bench
Program of the US. Army for test case generation. The test support software group for
this program estimated their cost savings to be 89% for test case generation.

T in the stand alone operation is easy to use. While it is initially somewhat difficult to
understand the TSDL syntax, it is an English like language which can be learned by a
combination of formal training, reading, and hacking. T performs as described in the T
user documentation.

12.2.2 StP/T Adaptation to Existing Programs

The problems encountered while trying to evaluate T with the P-3 Update III ASQ-212
software are probably typical of problems which might be encountered when trying to
adapt T to other existing programs. The combination of mixing StP product lines,
tailoring documentation requirements, and utilizing a development methodology
which does not support a tight coupling of specification data between development
phases can limit a straightforward retrofit implementation of test tools like T. However,
this does not mean that an existing project cannot take advantage of automated testing
after initial program development.

Augmenting an SSA's test program with automated test case generation tools and,
possibly, automated test execution tools can have a positive impact on the overall
quality and efficiency of the software test program for software updates in the future.
IDE is in the process of developing a reverse engineering tool which will take
previously developed Ada code and generate the appropriate OMT design diagrams
which will support test case generation using T. This would permit an existing Ada
program like the ASQ-212 software to take advantage of automated test tools by reverse

26

engineering the applicable code into T compatible OMT design structures for test case
generation.

12.2.3 StP/T Application for New Programs

T used along with StP could be a valuable test aid when a developer is required to
enter the appropriate type and value/domain information in the data annotations, and
prepare diagrams which will support both code development AND testing. The early
integration of test data in diagrams for use by StP/T is a viable method for enhancing
and more tightly integrating the software development and test processes.

A very important requirement for specification based testing is that the code match the
specifications. If the design specification is the basis for test, the Navy must require
software designers to use a software design tool which (1) can generate usable Ada
specifications for the code and- (2) can interface with a test case generation tool such as
T. This ties the design, code, and test data together which reduces redundancy and
makes automatic test case generation feasible.

The StP/SE product line evaluated as support for the T tool does not adequately
support the above proposed integrated approach because its data structures do not
translate to usable Ada specifications. Further studies are proposed for evaluating
newer, more advanced tools such as StP/OMT which will have both a T interface and
an Ada reengineering capability.

12.3 Overall Recommendations

Even in the absence of a validated, fully integrated CASE tool environment for software
development and testing, the use of the T tool for an SSA still looks promising. At this
time, its use for existing programs can be expected to be in the stand alone mode with
little or no support from available StP diagrams. However, T's full utility cannot be
assessed without additional hands on experience with an actual real time program
which has an operational testbed and an automatic test execution tool. A follow on
evaluation of T with a test execution tool such as Software Test Works by Software
Research, Inc. , is recommended to build upon this initial evaluation of T for SSA
utilization.

For the front end interface with T, the capabilities of OMT need to be evaluated
including reverse engineering (when available), design, code creation, and extract.

For new software programs which are considering Ada CASE tools, the following
capabilities should be heavily considered in the CASE tool selection decision in order to
use the T tool:

* Is the tool set vertically integrated?

* Does the design tool generate compileable Ada specifications?

27

® Does the tool incorporate test ready data which can be extracted for testing?
* Is there a reverse engineering capability?

With T and the proper CASE tool support for a new software development, the required
test effort can be made more effective and less costly.

28

—

13. ACRONYMS

ADARTS Ada based Design Approach for Real Time Systems

ADE Ada Development Environment, a StP tool implementing OOSD notation
ASQ The designation for the VP 212 project hardware upgrade
ASW Anti - Submarine Warfare

aka also known as

CASE Computer Aided Software Engineering

CFD Control Flow Diagram (Supporting SA for SE methodology)
CsC Computer Software Components

CsCI Computer Software Configuration Items

CSE Control Specification Editor (an StP capability)

CSU Computer Software Unit

DBMS Database Management System

DED Data Entity Editor (an StP capability)

DFD Data Flow Diagram (Supporting SA for SE methodology)
DFE Data Flow editor (an StP capability for a DFD)

DoD Department of Defense.

DPS Data Preparation System (an StP capability)

DSD Data Structure Diagram (Supporting SA/SD for SE)

DSE Data Structure Editor (an StP capability for a DSD)

FQT Formal Qualification Tests

FTP Fly To Point.

IDA Institute for Defense Analysis, Alexandria, VA

IDE Interactive Development Environments, Inc. (owner of StP and T)
IEEE Institute of Electrical and Electronics Engineers

ISE Integrated Structured Environment (Same as SE)

NAWC Naval Air Warfare Center.

OMT Object Modeling Technique, a new StP product line built on the Core
OOSD Object Oriented Structured Design , a StP product line

PAT Process Activation Table (Supporting SA methodology)

RFP Request for proposal.

RT Real Time

RTD Run Time Data

RTM Requirements Traceability Management (A StP associated tool)

SA Structured Analysis. The StP SE (STRAND) methodology for requirements
SCD Structure Chart Diagram (Supporting SD methodology)

SCE Structure Chart Editor (an StP capability for SCDs)

SD Structured Design. The StP SE (STRAND) methodology for design

SDD Software Design Document

SDF Software Description File, a StP/T creation from IDE

SDF Software Development Files (2167A term)

SE Structured Environment, the designation of the StP STRAND ,i.e., ISE
product line

SPARC Scalable Processor Architecture (Sun).

29

SPC
SPF
SRS
SSA

STL

STRAND
StP

™S
TSDL

Software Productivity Consortium

Software Production Facility at NAWCADWAR

Software Requirements Specification

US Navy fleet operational Software Support Activity

Software Test Descriptions

State Transition Editor (an StP capability)

Semantic Transfer Language, IEEE standard 1175, 1991
Software Test Report

Structured Analysis and Design. The StP/SE product line, aka ISE
Software through Pictures, a set of product lines from IDE, Inc.
Tactical Mission Software

T Software Description Language, a superset of STL

30

APPENDICES
The appendices which follow provide information to aide any ongoing evaluation of

StP/T. They include procedures used for the study, problems encountered, their
solution or work around, diagnostic aids, etc.

31

H

APPENDICES
The appendices which follow provide information to aide any ongoing evaluation of

StP/T. They include procedures used for the study, problems encountered, their
solution or work around, diagnostic aids, etc.

32

APPENDIX A. StP/Extract/T Installation, Setup, and Operation Procedures
Al. StP/Extract Installation

Refer to the "StP Installation Guide" provided with the StP delivery for the 4.2D
installation. NAWC has no formal installation instructions for the associated StP
Extract software at this time. All extract installation files have been put in the directory
/staff /imet/banowetz/S TP /ISE-T-integ/
which includes the file S TPmenu.spec and two sub directories t_int and ann_tmpl.
These constitute the interim StP/Extract installation until formal installation of these
files onto protected directories. The three are referenced in the users StP/Extract
Toollnfo file as follows:

The S TPmenu.spec file corresponds to the S TPMenuSpec variable.
The tint sub directory must be included in the PATH definition.
The ann_tmpl sub directory must be used to set the annot_path StP variable.

A2. T Installation

Refer to the "T Installation Guide" provided with the StP/T delivery. The T installation
directory is

/tools/cots/sunos.4.1.x/T3.1
which is available if logged into guinan (or crusher or troi if man (help) pages are not
needed).

A3. StP/Extract User Directory Setup

Create a local directory for your customized StP related information. In this directory,
create a customized StP/Extract "ToolInfo" file. A formal approach to this would be to
start with a copy of the delivered ToolInfo in

/tools/IDE/libsun4/
and delete all lines not to be customized. Then add a final line which includes (by
reference) the original file in its original location with the line

Toollnfo =/tools/IDE/libsun4/Toollnfo
This reference will supplement the StP Toollnfo data not in the modified file. Further
instructions for customizing this file can be found in the StP Reference Manual.

As a shortcut for the above, copy the ToolInfo file used by another user of StP/Extract
and customize at least the following items:

projdir [default project for StP]
system [default system/model for StP]
S TPMenuSpec [the file for menus supplemented for Extract]
PATH [to include the StP/Extract software installation directory]
annot_path [to the directory containing all StP annotation
templates including Extract annotations.]

A-1

An example of a user ToolInfo file for StP/Extract is ToolInfo.ISE-Tbase in
/staff/imet/banowetz/t_test/
which is displayed in Figure A3-1.

Set up an alias (in your alias setup script, i.e., .cshrc) to set the environmental variable
ToolInfo to the above ToolInfo file and run the script. This is to easily switch to the
StP/Extract capability from the StP/T capability. For example:

alias setSTPE "setenv ToolInfo <full path to customized file> "

Run the alias setup script to activate the alias.

Set up a StP project directory. which will be the parent directory of your StP system
models. Each of these system models will eventually have its own file structure of
subdirectories containing a database, the StP diagram directories, and SDF directories.

A4. T User Directory Setup

The following steps will set up your account for running T:

1.

2.

Create a local directory for your customized T related information.

Copy the tconfig.ini file from the T installation directory
/tools/cots/sunos.4.1.x/T3.1

to this directory. This file is customized as described in step 5 below. A typical

"TCONFIG" file is shown in Figure A3-2.

Set up an alias (in your alias setup script) to (1) set the environmental variable
TCONFIG to the TCONFIG file above, and (2) set the environmental variable
ToolInfo to the delivered ToolInfo file in the T installation directory . This is to
easily switch to the StP/T capability from the StP/Extract capability. This alias
must be written in one line, for example, by appending the following two lines:
alias setT "setenv TCONFIG <full path to customized file> ;
setenv ToolInfo /tools/cots/sunos.4.1.x/T3.1/ToolInfo"

Run the alias setup script to activate the alias.

To customize the "TCONFIG"file, use the T help facility in T or StP to list the
HELP information on configuration:

From T:
After the T directory setup above is complete, enter
t3 -h
and respond to the menu to obtain Customizing Defaults information.

Edit your TCONFIG file accordingly.

From StP:
After the StP directory setup above is complete, enter
StP &
From the Main Menu, select "T integration” and "T3 help".
Execute and enter a "c" selection for Customizing Defaults.
Edit your TCONFIG file accordingly.

AS5. StP and Extract Operaﬁ(;n

If man (help) pages are needed, log into guinan. In the man pages are not needed,
crusher or troi can be used as processors to run StP.

Execute the StP/Extract setup alias prepared above.
Change the default project and or system /model in the ToolInfo file if desired.

Run the StP in the background by entering
StP&

Refer to the StP Users Guide of version 4.2D for operation instructions.

A6. T Operation
Log into crusher of any system with direct access to the T installation directory.

Set the TCONFIG and ToolInfo environmental variables by executing the StP/T setup
alias prepared above in T User Directory Setup.

To run Tverify, go to the directory where the SDF file is and enter
t3 -v<sdf>
where <sdf> is the name of the SDF file (not preceded by a space).

To run Tdesign from the data in TestUnitDir as defined in your TCONFIG file, enter
t3 d

To run both Tverify and Tdesign, go to the directory where the SDF file is and enter
t3 -v<sdf> d

Refer to the T Users Guide for operation instructions. Also use the help text in T itself
(t3 -h). The file catalog.txt in the T installation directory is a valuable aide for TSDL

syntax matters.

ToolInfo.ISE-Tbase Mon Sep 26 17:06:13 EDT 1994

% ToolInfo.ISE-Tbase in /staff/imet/banowetz/t_test

% Used by .stp_t to build ToolInfo.ISE-T to support StP/T
% Do NOT edit ToolInfo.ISE-T directly.

stp_product=/tools/IDE/templates/ide_stp product.dat

% Project/System environment

% Initially project directory is the current directory
rojdir=/staff/imet/banowetz/STP
projdir=/tools/cots/sunos.4.1.x/T3.1/t_int
does not work !ttt

Initially project database is enabled;
pdb_enabled=1

% This is the same as specified by the -s argument on the command line
% or the ToolInfo attribute system

system=vb212
% alt values above are init_system, and apartment. The above value is
% used to edit by .stp_ t

o° oe oo g

s e o W ————— —— T T —— T ———— T —_— = T o P — " Wt b o o S o o T o — T — o 7 Vo T B

o

The specification file for the StP main menu
Customized STPmenu.spec file for the StP/T integration

TPMenuSpec=/staff/imet/banowetz/STP/ISE-T~inteqg/STPmenu. spec

StP-binaries -> PATH
ATH=.:/staff/imet/banowetz/STP/ISE~T~-integ/t int:/tools/IDE/binsund:/bin:/usr/bin:,

Customized annotations for the T Integration
nnot_path=/staff/imet/banowetz/STP/ISE-T-integ/ann_tmpl
establishes the path to T

dir=/tools/cots/sunos.4.1.x/T3.1

T demo license

O° o 0 3 A I A° O A° IO W A A O A I I O I U O IO P o

$nlm license_dat=/tools/cots/sunos.4.1.x/T3.1/license.dat
STP_DEMO LIC_DAT=7A0-E66-307-A6F-133~07A-0E6-630-0E3-80E-38D
%

%

ToolInfo =/tools/IDE/libsun4/ToolInfo

ToolInfo.ISE-Tbase

Figure A3-1. Exampleﬂof Toolinfo file for StP/Extract

A-%5

***** tconfig.ini n Thu Nov 10 12:40:27 EST 1994

T3 Configuration File
tconfig.ini A user customized selections file for running T

[BASE]
following two entries for INSTALLATION

TPath = /tools/cots/sunos.4.1.x/T3.1 # full path to installed T product
TPath = /staff/imet/banowetz/STP/ISE-T-integ/t_int # try this for extraction
Does not work for extraction and T fails.)

Tldb = /tools/cots/sunos.4.1.x/T3.1/tldb # full pathname of T language data]
TestUnitDir = /staff/imet/banowetz/t_test/UNITDIR # path to a default testun:
MessagelLevel = 3 # default highest message level reported (0,1,2,3)
[VERIFY)
ListExtra = no # list extra sdf information in verify.rpt

n,no,NO,... or y,yes,YES...
[DESIGN])
Preconditioned = yes # require preconditions to be TRUE in test design

n,no,NO,... or y,yes,YES...
SummarylineSpacing = 1 # summary report, l=single space, Z2=double space
[PREPARE]
TestCaseDir = /staff/imet/banowetz/t_test/PREPDIR

path to a default testcase directory for prepared test case files

TestCaseSubsetAction = all # default test case subset of actions to prepare
TestCaseSubsetState = all # default test case subset of states to prepare
TestCaseSubsetIndex = all # default test case subset of indexes to prepare

path to default case descr. file for prepare
CaseDescriptFile = /staff/imet/banowetz/t_test/tcf.cdf

[END]
***** tconfig.ini n Thu Nov 10 12:40:28 EST 1994

Figure A3-2. Example of TCONFIG file for T

F

APPENDIX B. Diagnostic Messages, Errors and Countermeasures
Bl. T Diagnostic Messages, Errors and Countermeasures

B2. StP Diagnostic Messages, Errors and Countermeasures
B2.1 StP/E startup problems

B2.1.1 Setup error

B2.1.2 Overload

B2.1.3 Segmentation Fault StP (core dumped)

B2.2 DFD problems

B2.3 Control Spec problems

B3. StP Extract Problems

B3.1 Extract SA problems
B3.2 Extract SD problems
B3.3 Extract RT problems
B3.4 General extract problems

B-1

Bl. T Diagnostic Messages, Errors and Countermeasures

Problem: Tverify fails with Segmentation fault (core dumped)
Resolution: Failure to define the environmental variable TCONFIG variable for T
execution

Problem: T stand alone fails with the following in StP execution window:
FLM: "T" checkout failed
FLM error: no such feature exists
error 9900: internal error

No T license is currently available

Resolution: The Toollnfo ehgzironmental variable is defined for StP instead of for T. Use
the alias set up in Appendix A3.

B2. StP/SE Diagnostic Messages, Errors and Countermeasures

B2.1 StP/E startup problems

B2.1.1 Setup error

Problem: StP/Extract fails at startup with the following in active window:
ToolSpecification file:: No such file or directory
S TPmenu.spec

Setup command/argument panels failed

Resolution: The ToolInfo environmental variable is defined for StP/T instead of
StP/Extract? Use the alias set up in Appendix A4.

B2.1.2 Overload

Problem: Starting up StP, the window used to start up StP has the following message:
sh: getwd: can't stat .

after the usual:

StP: Parsing Specification File
StP: Setup Control Panels

Other related problems:
The START DBMS switch is present.
The DFD edit on an existing file comes up void.

Resolution: Switch to another processor for StP operations. This problem may be
related to high load.

B2.1.3 Segmentation Fault StP (core dumped)

Problem: Starting up StP, the window used to start up StP hangs after the following
message:

StP: Parsing Specification File
StP hangs up its execution window. After entering CTRL C the response is

[2] Segmentation fault StP (core dumped)

Resolution: Your UNIX path variable may not be set up to use the Strand 4.2D version
of StP or your ToolInfo file may not be compatible with the StP version selected based
on you path.

B2.2 DFD problems
Problem: The generate StP/DD command produces an error message:
StP/DD allnames locked --- retries left 15

Resolution. The cause of this lockup is unknown. As a work around, quit all StP
processes and restart.

B2.3 Control Spec problems

Lines of information in the Process Activation Table (PATs) lines must be deleted using
the line delete command. Otherwise, a "Bus error" can be expected when doing the
associated RT extraction. The error is caused by removing a row of PAT data by
deleting the components rather than the entire row as must be done. To delete the row
correctly, the two horizontal parallel bars must replace the cursor above the line to be
deleted in column 0 (row numbers) when the delete is selected.

B3. StP Extract Problems

The Extract program and scripts are integrated into StP/SE. Problems relating to their
use for System Analysis (SA), System Design (SD), and Real Time (RT) are described
below.

B3.1 Extract SA problems

Problem: Only primitive processes can be extracted for test.
Resolution: Upgrade to StP version 5.0 with the associated extract software.

B3.2 Extract SD problems
N/A

B3.3 Extract RT problems

The extraction of RT data from the Control Specification Process Activation Table (PAT)
is not usable by T. It is only a translation tool which makes the PAT language more
readable.

B3.4 General extract problems

The SDF file produced by the extraction is sometimes void. This seems to be a unix file
problem caused by entering the new SDF directory too soon. A new directory is created
for each SDF extract product. Do not get into this new directory until after the
"Completed extraction” line appears in the cmdtool window.

For testing purposes, StP annotations must include min, max, and increment
data for all numeric data. This must be added even though this information is
not required for intermediate data from the point of view of the SRS, or
function testers. It is only needed from the point of view of unit testing.

C1. StP tips
C2. StP Extract Tips
C3. Ttips

APPENDIX C. Questions and Answer Tips

C-1

W

C1. StP tips

Question: What are the installation parameters and constraints on the installation of StP

at NAWC?
Answer: StP was installed on guinan. It is executable on either guinan or crusher but
the man pages are available only on guinan.

Question: What are the StP diagram types, their purposes, and corresponding data
storage directories?

Answer: The Diagram types are listed below numbered by StP 4.2D User's Guide
Chapter.

11.

12.
13.

16.
18.

DF -- Data Flow. Requirements/SRS (SA model for T). Data in dfe_files.
DS -- Data Structure. Supporting SA, SD, T Data in dse_files.

ER -- Entity Relationship. Supporting SA, SD,.(alternative to DSE) Data in
ere_files

SC -- Structure Chart design/SDD (SD model for T) Data in sce_files.

CF -- control flow (included in DFE by option box) Data in dfe_files.

CS -- control specification. (Competes with STE/11)

Evoked by pushing on cspec symbol and selecting CSE and then one of the 7
media of expression OR by selecting the CSE editor directly. Only the Process
Activation Tables (PATs) are used by T. The six other forms or control
specifications are not used by T3. Associated files are in csp_files . (There is
no cse_files directory)

ST -- State Transition (compare to 18. Competes with CSE/10).

Evoked by pushing on cspec symbol and selecting STE. Data in ste_files

PIC -- picture editor. Data in pct_files. Not connected to DD.

OA - Object Annotation (activate by right mouse button) Data embedded in
parent diagram repository.

DPS - Document Preparation System. Data in doc_files and ted_files

TD -- Transition Diagram (missing from main menu ????) Data in tde_files.
(not used in ASQ-212/tms/nav) Not connected to DD.

Question: Other than the directories supporting StP above, what additional data
directories are created by StP?

Answer:

t_files: The depository of SDF files from the StP/T extraction
obj_files unknown purpose (not used in ASQ-212/tms/nav)
src_files unknown purpose (not used in ASQ-212/tms/nav)

Question: How can you create links between modules in the SCE withOUT
arrows on the ends like on page 8-17 of the StP Users Guide?

Answer: Toggle on arrow symbol in options area when SCE group is active.
You may have to re-edit the diagram.

Question: How do you define the scenario number in the annotation?

Answer: Select a data flow item in a DFD for annotation editing and add the note type
"Scenario". Then enter a note key value consistent with other data flows in the same
group you wish to define.

Question: Must a data store be used for both input and output.
Answer: Yes, if not it will be flagged as an error. If both input and output are not part
of the requirements, then the database should be set up as external.

Question: How do you resolve the "Undefined Data" problem?

Answer: Items marked as "Undefined Data" by the check diagram command are
primitive data items which do not have a type defined in the data dictionary. Even
selection items must have the type defined but any value such as N/A is sufficient. The
extraction program takes the selections items as string values for the parent dataitem.
Also be sure to generate the StP/DD for each diagram.

Question: How do you delete a StP entity:
Answer: The following items which appear in the data dictionary can be deleted as
follows:

Diagram - Main Menu - Diagram Utilities, Delete Diagram (Avoid using a unix
delete ... you will have to cleanup using the data browser)

Object - Main Menu - Project Database, Delete Named Object

Question: What happens when the ToolInfo environment variable is not defined
and pointing to the proper file?
Answer: Error Message:

ToolSpecification file:: No such file or directory

Question: Are Control flows permitted to flow into any DFD/CFD process?

Answer: Primitive processes (those with a process spec) cannot accept control flow
input. The control flow for this process should just flow into an anchor point to indicate
that it is present but is really of interest only at a higher decomposed level. The process
specification at the highest level possible should indicate which processes are activated
under what condition. Use the Process Activation Table (PAT) form if you wish to
extract a TSDL form interpretation of the process specification.

Question: What is the value of SDF files from RT (Real Time) Extract?

Answer: These files provide a verbose interpretation of the Process Activation Table
(PAT) of a control specification to clarify its meaning. It is useful as a training device
but has little relevance to StP/T.

Question: What can be done when a there appear to be mysterious, spurious
constraints to changes in the annotations or diagrams.

Answer: Use the DD browser to remove obsolete objects and regenerate the data
dictionary.

Question: What is the cause of the error message below produced by Check DD?
ERROR: Unconnected Offpage connector:

Answer: There are spurious unused anchor points in a DFD. Be sure that the anchor

points are not part of a control flow by displaying both data and control flow and

remove all unnecessary anchor points.

Question: What data dictionary checking utilities are available outside of the menu
driven DD checks?
Answer: The StP data can be checked beyond the check_dd function by the script:
/cp2044 /fss/a47 /local /rjohnsons_srs_tools /gen_dd_all.sh
with help file: -
/cp2044 /fss/a47 /local /rjohnsons_srs_tools/gen_dd_all.doc
and supporting file:
/cp2044 /fss/a47 /local /rjohnsons_srs_tools/gen_dd_all.trl

Question: How do you enter minimum, maximum, and increment when adding
annotation for a data item?

Answer: Select Annotation edit for an object (either a data item or type).

In the Note Type mode, select Add and add Domain as a note type. With Domain
selected, select Edit. Data item which switches from Note Type to Note Item mode.
Select Add and add minimum, maximum, and increment (as needed). Move the cursor
to the Value area to change and enter the desired values.

Question: Where are the variables defined in the StP ToolInfo file described or

documented?
Answer: The StP ISE Customizing the Environment document describes the StP

Toollnfo variables.

Question: Is there an annotated list of error messages generated by StP?
Answer: There is a list of error messages in file in the StP installation directory
(/tools/IDE/libsun4/msg_file) but it is NOT annotated.

C2. StP Extract Tips

Question: What types of changes to the diagrams for T extraction are of a global nature?
Answer:

The T extract program requires all base types used in the diagrams to be spelled in
lower case. (WARNING: the base types may not contain the most desirable domain
data.) For the ASQ-212 data, the case is typically mixed.

Question: What tools are available for global changes to the data structure diagrams ?

Answer: DSD files can be changed quickly by the UNIX sed command by setting up an
edit file such as the one below to change the base type names to lower case:

C-4

N N O U an Gn BN N G B Gy a0 an NS R oW W Ny B

1,s.T Boolean$.T boolean$
1,s.T String$.T string$
1,s.T Real$.T real$

1,s.T Integer$.T integer$

By using the above text in a file named after the -f parameter of the sed command, a
DSD file can be edited. This would have to be done to both .dse and .str files.

Changes such as the above could be done to all DSD diagrams for a model by using a
perl script (perl is not yet installed at NAWC). Then the changes to all dse diagram files
can be incorporated into the data dictionary by the following c shell script:

foreach j ("cd /<system directory>/dse_files; Is *.dse")
eChO "nmn)
echo "Generating Structure for DSE diagram: $j"
dsstr -v $j
end
foreach j (‘cd /<system directory>/dse_files; Is *.str")
echo "t
echo "Generating data dictionary from DSE diagram $j"
struct_dd -v $j
end

Question: What diagrams and data are used for the extraction for T?
Answer: There are extraction process for diagrams of the following types:

DFD, Data Flow Diagrams in directory dfe_files: (All primitive processes including
and under a selected process)

DFD, Same as above but only processes with a specified scenario number)
SCD, Structure Chart Diagram in directory sce_files for a selected module.

RTD. Run Time Data. Selected Process Specification (Process Activation Tables
only) in directory csp_files

DSD, Data Structure Diagrams in directory dse_files: As needed for definitions for
above DFDs and SCDs

Question: Which StP requirements and design diagrams ares NOT
incorporated into the T extraction?
Answer:
DED, Data Entity Diagrams in directory ere_files
(An alternative data description format to DSD.
CFD, Control Flow Diagrams in directory dfe_files: (This information is ignored)

C-5

Question: What documentation is available for the StP/T extraction?
Answer:
a. Appendix A of the soft spiral bound class handout "Automated
Software Testing, Version 0.6"
b. Application Note: Software through Pictures (StP) and T Integration

Question: What types of dataitems in the SDF are meaningful to T.

Answer: The Application Note for StP/T indicates that the base types are

real, integer, string, boolean, or character. However, dataitems should NOT normally
be typed directly to these base types (except for boolean) if the diagrams are to be used
for testing since these datatypes do not have reasonably usable domains. Instead, they
should be typed to higher level datatypes within the StP diagrams which themselves
have these base types (but with reasonable, customized domains). Alternatively, they
can be typed to a suitable type in the Stp.std or tsdl.std file included by the SDF file.
(However, version 4.2D of the StP extract program has a bug. It does not recognize
types in the tsdl.std file as special and generates spurious lines in the SDF labeling these
types as undefined.)

Question: What constraints are there on domain values for the numeric types:
Answer:
integer: no decimal point
real: decimal point required. However, the decimal point need not be
preceded and followed by a digit as in Ada

Question: How can test cases for the entire system be extracted?

Answer: Extractions from the Structure Chart Editor (SCE) design diagrams provide test
cases for all modules which have inputs. However, the input must not be from an
anchor point. Use an external symbol to represent the input to the main module if test
cases are desired.

Extraction of the top level (context diagram) (DFD) process is not possible for StP
version 4.2D. However, any non-primitive SA process including the top level one can
be extracted using StP version 5.0.

C3. Ttips

Question: How do you setup a command window to run T at the VP facility.

Answer:
The processor for running T must be "crusher” or one which has access to its file

directory.

The TCONFIG environment variable must point to your TCONFIG file, the file
specifying the selections for the T execution. Do this by
setenv TCONFIG <filename>

The Toollnfo environment variable must point to your T ToolInfo file, the file specifying
the locations of the Menu data for the T execution. Do this by
setenv ToolInfo <filename>

The above two files can be customized from a sample provided with the T delivery.

Question: Where are the variables defined in the StP/T ToolInfo files described or
documented?

Answer: The StP ISE Customizing the Environment document describes the StP
Toollnfo variables.

Question: What are the reserved words and keywords of the TSDL language?

Answer: The TSDL language is one of the largest languages around but has NO
reserved words. There ARE a large number of keywords which have meaning in
context but are not restricted to use by the user for variable names. However, their use
can be confusing so a warning is generated by Tverify. Bob Poston, the creator of T,
recalled that a list of keywords was formerly available and possibly called keywords.txt.
However, this was not part of the T tool delivery. The rnames.exe utility appears to
offer a capability to list of keywords but it is not documented.

Question: Is it possible to change the Stp.std used when running T.

Answer: The extraction program generates a SDF file with an include of <sdf.std>.
This Stp.std file is in the same directory as the T executables based on your TCONFIG
and ToolInfo files. However, to change the file, create your own version in your own
directory and modify all SDF files to change the reference to that file. Replace the
<sdf.std> reference by the full path name within double quotes.

Question: What is the source of the low bound and high bound values in the
samples.rpt file?
Answer: The SDF file provides this by datatype definitions in one of two ways :

In a "has values” clause, the first item listed becomes the "low" bound whether it be
real, integer, or string. It does not necessarily mean low in the algebraic sense.
Similarly, the last value listed becomes the "high" bound.

In a "has value range..." clause, the minimum becomes the low bound and the
maximum becomes the high bound.

APPENDIX D. Weight Computer Program Illustration

D1. Requirement Specification Data Flow Diagrams (DFDs) for Structured Analysis
D2. Data Structure Diagrams (DSDs)

D3. Structure Chart Diagrams (SCDs) for Structured Design (SD)

D4. Software Description File (SDF) Listings

D5. Tverify/Tdesign Reports for Main Process

D-1

D1. Requirement Specification Data Flow Diagrams (DFDs) for Structured Analysis

The starting point for defining requirements in the StP world is a special type of DFD
called the context diagram . This diagram has one or more characteristic symbol, the
rectangle. A rectangle in the context diagram represents an external element, i.e., an
elements outside the program being described. In the very simple model shown in
Figure D1-1, the user is the external element. This external might also be called the
display/keyboard.

For all DFDs, a circle represents a process. A process circle is numbered and the
character following the process number indicates whether the process is decomposed
(broken down into components) or not decomposed (primitive). Those with a "™*"
following the number are decomposed processes . Those with a "p" following the
number are primitive processes. These processes are described in a process
specification. These process specifications are automatically generated except for the

description part which is provided by the StP user for the process.

Process 0 of the context diagram (also called the top level diagram) is decomposed into
a diagram called level 0. This diagram focuses on the internal flow instead of the
external flow to process 0. This decomposition is illustrated in three different ways in
Figures D1-2 through D1-4. These three decompositions are labeled "verbose", "terse",
and "preferred" respectively because they illustrate the alternatives in diagram detail
available to the user. The three are essentially equivalent and produce comparable SDF
files from the StP/T extraction. However, an additional, rather trivial, SDF file was
created for the verbose split_record process in Figure D1-2. (No listings specifically for

the verbose and terse diagrams are shown beyond the DFDs.)

A data flow coming to or from an unlabeled point (known as an anchor point) in a DFD
represents communication with an external. Data flow coming to or from a numbered
but otherwise unlabeled circle in a DFD represents communication with a process
defined in a higher level diagram.

In the preferred level 0 diagram (Figure D1-4), there are two processes numbered 1 and
2. Since process 1 is primitive, there is no level 1 diagram . However, process 2 is
further decomposed into a level 2 diagram in Figure D1-5 to illustrate multiple levels of
decomposition. The listings which follow the DFDs list the data flow items,
annotations for all processes, and the process specifications for those which are
primitive. The process specification is nothing more than text to describe what a
primitive process is required to do.

Project:
System:
Diagram:

/staff/imet /banowetz/STP/
init_system

top

user [request

report_weight

0=*
weight
computer

Figure D1-1. Example of a simple context diagram

Project: /staff/imet/banowatz/STP/
System: init_ system
Diagram: O

width

P
split_record

computer

gravity
volume

report_weight

Figure D1-2. Verbose 0 level Data Flow Diagram (DFD) decomposition

n-4

Project: /staff/imet/banowetz/STP/
System: init_ system
Diagram: 0

.Tequest

1p
volume
computer

Tequest

1Ss_volume

density-

grav-
mult

report_weight

Figure D1-3. Terse 0 level DFD decomposition

Project:
System:
Diagram:

/staff/imet /banowetz/STP/
init system
0

width

height length

1p
volume
computer

gravity

1s_volume

report_weight

Figure D1-4. Preferred 0 level DFD decomposition

D6

Diagram O:

Note diag

Top level for a system to compute weight and report to user.

Note Requirement compute weight
RequirementName: compute weight

Process 1, volume computer:

Note ProcessSpec
Process 1: volume_computer

Pspec generated

21 September 1994 at 14:34:16 by banowetz@crusher
This process has 4 data flows:

rs_volume, length, width, height

input data flows
length, width, height

output data flows
rs_volume

description
multiply length, width, and height
to get volume

end pspec

Process 2, vol-density-grav-mult:

Note process
Name: vol-density-grav-mult

Note Testability
ActsOnlyIf: rs_volume >= 0.0
IsTestedExhaustivelyOn: density

THis process is testable only for non negative volume.

Data Flow density:

From: Offpage.0
To: vol-density-grav-mult

Note DataFlow density
Name: density
density and gravity only to 2p

Note InterfaceDesign request
InterfaceName: request

InterfacePriority: N/A
InterfaceType: CSCI or HWCI

Data Flow gravity:

D7

From: Offpage.0
To: vol-density-grav-mult

Data Flow height:

From: Offpage.0
To: volume_computer

Data Flow length:

From: Offpage.0
To: volume_ computer

Note DataFlow length
Name: length
lenght, width, and height go to 1lp

Note InterfaceDesign request
InterfaceName: request
InterfacePriority: N/A
InterfaceType: CSCI or HWCI

Data Flow report_weight:

From: vol-density-grav~-mult
To: Offpage.0

Data Flow rs_volume:

From: volume_computer
To: vol-density-grav-mult

Note DataFlow rs_volume
Name: rs_volume

Note InterfaceDesign volume
InterfaceName: volume
InterfacePriority: N/A
InterfaceType: CSCI or HWCI

Note Scenario 3
ScenarioNumber: 3

Data Flow width:

D-8

Project: /staff/imet/banowetz/STP/
System: init_ system
Diagram: 2

@\ density ~ Sravity

rs_volume

22p

21p
weight proc

mass proc mass

report_weight

Figure D1-5. Level 2 DFD

D-9

Diagram 2:

Note diag
Parent: vol-density-grav-mult

Note Requirement compute weight
RequirementName: compute weight

Process 2.1, mass_proc:

Note ProcessSpec
Process 2.1: mass_proc

Pspec generated
21 September 1994 at 14:34:45 by banowetz@crusher
This process has 3 data flows:
rs_volume, density, mass
input data flows
rs_volume, density

output data flows
mass

description
mass = rs_volume * density
end pspec

Process 2.2, weight_proc:

Note ProcessSpec
Process 2.2: weight_proc

Pspec generated

21 September 1994 at 14:34:45 by banowetz@crusher
This process has 3 data flows:

report weight, gravity, mass

input data flows
gravity, mass

output data flows
report_weight

description
report_weight = mass * gravity
end pspec

Data Flow density:

From: Offpage.2
To: mass_proc

Data Flow gravity:

From: Offpage.2
To: weight proc

Data Flow mass:

From: mass_proc
To: weight_proc

Data Flow report_weight:

From: weight_ proc
To: Offpage.2

Data Flow rs_volume:

From: Offpage.2
To: mass_proc

D2. Data Structure Diagrams (DSDs)

All data for this model is presented in two compact diagrams. Figure D2-1 shows the
data available to the context diagram and Figure D2-2 shows local data. Figure D2-1
shows input "dataitems" arranged in a record (request), the output dataitem (weight),
and the "datatypes” needed for the primitive (undecomposed) dataitems. The datatype
"dim_type" is used for all three of the dimensional dataitems. The listings which follow
each figure show the annotations for all items. Annotations indicate the type of a
dataitem and the allowable values or domain for a datatype. The domain is the
minimum and maximum value allowed for a type and the increment desired for test
variations. StP treats the dataitems and datatypes as similar entities and arranges them
alphabetically in these listings.

The DSDs support both the SA dxagrams in Section D1 above and the SD diagrams in
Section D3 below.

Project: [staff/imet/banowetz/STP/

System: init system
Diagram: request

length

width

dim_type

Tequest

height

density

gravity

den_type

grav_type

report_weight

Figure D2-1. Context Diagram Data DSD

D-13

Diagram request:

Note diag
Name: request

This diagram has all external data elements.
are the data elements which are I/0 to/from an external

entity.

Data Structure request:

Note DataDefinition
Name: request

Element den_ type:

Note DataDefinition
Name: den_type
Type: real
Units: kg/meter

Note Domain
Increment: 10.0
Minimum: 0.0
Maximum: 1.0E3

Element density:

Note DatabDefinition
Name: density
Type: den_type
Units: kg/cubic

Element dim type:

Note DataDefinition
Name: dim type
Type: real
Units: meters

request

den_type

density

meter

dim_type

dimensions: length/width/height

Note Domain
Increment: 1.0
Minimum: 0.0
Maximum: 1.0E2

Element grav_type:

Note DataDefinition
Name: grav_type
Type: real

grav_type

Units: newtons/kg

Value: 9.8

Note Domain
Increment: 0.2
Minimum: 0.0
Maximum: 20.0

Element gravity:

These

Note DataDefinition gravity
Name: gravity
Type: grav_type
Value: 9.8 newtons/kg

Element height:

Note DataDefinition height
Name: height
Size: N/A
Type: dim_type
Units: meters

Element length:

Note DataDefinition length
Name: length .
Type: dim_type

Element report weight:

Note DataDefinition report_weight
Name: report_ weight
Type: weight type
Units: newtons

Element weight type:

Note DataDefinition weight type
Name: weight_type
Type: real
Units: newtons

Note Domain
Increment: 1.0
Minimum: 0.0
Maximum: 9.0e99

Element width:

Note DataDefinition width
Name: width
Type: dim_type

Project: [staff/imet/banowetz/STP/
System: init system
Diagram: rs_volume

rs_volume

mass

volume type

mass_type

Figure D2-2. Local Data DSD

D-16

Diagram rs_volume:

Element mass:

Note DataDefinition mass
Name: mass
Type: mass_type

Element mass_type:

Note DataDefinition mass_type
Name: mass_type
Type: real
Units: kg

Note Domain
Increment: 1.0E8
Minimum: 0.0
Maximum: 1.0E1l1l

Element rs_volume:

Note DataDefinition rs_volume
Name: rs_volume
Type: volume_type
Units: cubic meters
volume is the product of 3 dimensions

Element volume type:

Note DataDefinition volume_type
Name: volume_type
Type: real

Note Domain
Increment: 1.0E4
Minimum: 0.0
Maximum: 1.0E7

e

R vy B e .

D3. Structure Chart Diagrams (SCDs) for Structured Design (SD)

The SD diagrams implementing the requirements of the SA diagrams in D1 are shown
in Figures D3-1 and D3-2. For this illustration, there is precise correspondence between
requirements and design which is facilitated by the use of the same DSDs shown in D2
above. Modules for the design match similar processes for the requirements which
means that requirements based testing will produce the same test cases as design based
testing. The main difference is that the flow of dataitems for the SD is shown only from
the perspective of parent/child relationships so that coding can be segmented and
structured.

Project: /staff/imet/banowetz/STP/
System: init_system
Diagram: O

external_i/O

report_weight (B

? request

Main_pdl

O/ rs_volume

height
width
length

(g report_weight
volume computer pdl

rs_volume ?

gravity ? density

weight computer pdl

Figure D3-1. Top level System Design Structure Chart Diagram (SCD)

Diagram 0:

Module Main pdl:

Note module

Name: Main_pdl
Input 5 values
Call volume computer pdl
Call weight computer pdl

Module external i/O:

Module volume computer_ pdl:

Note ModulePDL
module volume_computer_pdl

Pdl generated

6 September 1994 at 16:37:40 by banowetz@crusher
This module has 4 parameters:

rs_volume, height, width, length

input data params
height, width, length
input flags

output data params
rs_volume
output flags

calls

called by

Main_pdl

description
rs_volume=height*width*length

end module

p-20

Project:
System:
Diagram:

/staff/imet /banowetz/STP/
init_ system
weight computer pdl

(greport_weight

1s_volume (P density

gravity
weight computer pdl
massO” J0eport_weight
rs_volume _QO . Mass
ensity O._ gravity
mass computer by gravity

Figure D3-2. Second level System Design SCD

Diagram weight_ computer_ pdl:

Module by gravity:

Note ModulePDL
module by gravity

Pdl generated

17 August 1994 at 12:36:14 by banowetz@crusher
This module has 3 parameters:

report_weight, mass, gravity

input data params
mass, gravity
input flags

output data params
report_weight
output flags

calls

called by
weight computer_pdl
description
report_weight = mass * gravity
end module

Module mass_computer:

Note ModulePDL
module mass_computer

Pdl generated

17 August 1994 at 12:36:14 by banowetz@crusher
This module has 3 parameters:

mass, rs_volume, density

input data params
rs_volume, density
input flags

output data params
mass
output flags

calls

called by

weight computer pdl
description

mass = rs_volume * density
end module

'Module weight_computer_pdl:

D-22

------_---_W

D4. Software Description File (SDF) Listings

SDF files for the three primitive SA processes are shown in Figures D4-1 through D4-3.
SDF files for non primitive processes are not provided since version 4.2D of StP/SE
does not extract for non primitive processes. SDF files for all SD modules are shown in
Figures D44 through D4-8. The correspondence between SDF files for the SA and SD

are shown in Table D4-1 below.

Table D4-1 Figures for listings of SDF files for SA and SD

Unit SA SD
Figure Figure

length * width * height -> volume 41 45

volume * density -> mass 42 47

mass * gravity -> weight 43 48

Main program | N/A 44

volume * density * gravity -> weight N/A 4-6

D-23

lE EE Iy B = m TN IR O e = R aE = W e e

s_packet

Proc_volume_computer.

#include <stp.std>

Action

volume computer

is actiontype internal;

use

pro

Dataitem
is

Dataitem
is

Dataitem
is

Dataitem
is

Datatype
is
has
has
has
has
has

Datatype
is
has

has
has
has

s dataitem
height,
width,
length;

duces dataitem
rs_volume; .

height
an instance of datatype dim type.

width
an instance of datatype dim type.

length
an instance of datatype dim type.

rs;yolume
an instance of datatype volume_type.

dim_type
datatypeclass real;
value range minimum 0.0;
value range maximum 1.0E2;
value range resolution 1.0;
valid subdomain "as_specified";
invalid subdomain "abnormal".

volume_ type
datatypeclass real;
value range minimum 0.0;
value range maximum 1.0E7;
value range resolution 1.0E4;
valid subdomain "as_specified";

has invalid subdomain "abnormal".

Figure D4-1 System Analysis SDF for volume computer

s_packet

Proc_mass_proc.

#include <stp.std>

Action

mass_ proc

is actiontype internal;
uses dataitem

density,
rs_volume;

produces dataitem

Dataitem
is

Dataitem
is

Dataitem
is

Dataitem
is

Datatype

an instance

an instance

an instance

an instance

mass; .

size_cat
of datatype

density

of datatype den_type.

rs_volume
of datatype

mass
of datatype

size_cat_t

is datatypeclass string;

has

has
has

Datatype

values
llbigl! ‘
"small";
valid subdomair
invalid subdomsin

"zs_specified";
"not_in_list"™.

aen_type

is datatypeclass recal;

has
has
has
has
has

Datatype

is datatypeclass r=al;

has
has
has
has
has

Datatype

is datatypeclass =

has
has
has
has
has

value range r*~ivum 0.0;

value range . .owm 1.0E3;
value range r< :>lution 10.0;
valid subdom~:: "a:z specified";
invalid subdcinin "abnormal".

volume type

'

value ranga minimumn 0.0;

value range n ~um 1.0E7;
value range r ution 1.0E4;
valid subdomain “as_specified";

invalid subdcrin "abnormal™.

mas e

Lype
value range i m 0.0;

value range muximum 1.0E11l;
value range recolution 1.0E8;
valid subdomsi- "as_specified";
invalid subdoir-in "abnormal®.

Figure D4-2. System Analysis SDF for niass computer

D-25

size_cat_t.

volume_type.

mass_type.

s_packet

Proc_weight_proc.

#include <stp.std>

Action

weight proc

is actiontype internal;
uses dataitem

mass,
gravity;

produces dataitem

Dataitem

report_weight;.

mass

is an instance of datatype mass_type.

Dataitem

gravity

is an instance of datatype grav_type.

Dataitem

report_weight

is an instance of datatype weight_ type.

Datatype

mass_type

is datatypeclass real;

has
has
has
has
has

Datatype

value range minimum 0.0;

value range maximum 1.0E1l1l;
value range resolution 1.0ES8;
valid subdomain "as_specified";
invalid subdomain "abnormal™.

grav_type

is datatypeclass real;

has
has
has
has
has

Datatype

value range minimum 0.0;

value range maximum 20.0;

value range resolution 0.2;
valid subdomain "as_specified";
invalid subdomain "abnormal".

weight_type

is datatypeclass real;

has
has
has
has
has

value range minimum 0.0;

value range maximum 9.0e99;
value range resolution 1.0;
valid subdomain "as_specified";
invalid subdomain "abnormal".

Figure D4-3. System Analysis SDF for weight computer

D-26

s_packet

Mod_Main_ pdl.

#include <stp.std>

Action

Main pdl

is actiontype internal;
uses dataitem

width,
height,
length,
gravity,
density;

produces dataitem

Dataitem
is

Dataitem
is

Dataitem
is

Dataitem
is

Dataitem
is

Dataitem
is

Datatype
is

has
has
has
has

report_weight;.

width
an instance of datatype dim type.

height
an instance of datatype dim type.

length
an instance of datatype dim type.

gravity

an instance of datatype grav_type.

density
an instance of datatype den type.

report_weight

an instance of datatype weight type.

dim_type
datatypeclass real;
value range minimum 0.0;
value range maximum 1.0E2;
value range resolution 1.0;
valid subdomain "as specified%:

has invalid subdomain "abnormal".

Datatype

grav_type

is datatypeclass real;

has value range minimum 0.0;

has value range maximum 20.0;

has value range resolution 0.2;

has valid subdomain "as_specified";
has invalid subdomain "abnormal".

Datatype

den_type

is datatypeclass real;

has value range minimum 0.0;

has value range maximum 1.0E3;

has value range resclution 10.0;
has valid subdomain "as_specified";
has invalid subdomain "abnormal".

Datatype

weight type

is datatypeclass real;

has value range minimum 0.0;

has value range maximum 9.0e99;

has value range resolution 1.0;

has valid subdomain "“as_specified";
has invalid subdomain "abnormal™.

Figure D4-4. System Design SDF for top level weight computer (Main)

D-27

s_packet Mod_volume_ computer_pdl.

#include <stp.std>
Action volume computer_pdl

is actiontype internal;
uses dataitem

height,

length,

width;
produces dataitem

rs_volume;.

Dataitem height
is an instance of datatype dim type.

Dataitem length
is an instance of datatype dim type.

Dataitem width
is an instance of datatype dim type.

Dataitem rs_volume
is an instance of datatype volume_type.

Datatype dim type
is datatypeclass real;
has value range minimum 0.0;
has value range maximum 1.0E2;
has value range resolution 1.0;
has valid subdomain "as_specified";
has invalid subdomain "“abnormal".

Datatype volume_type
is datatypeclass real;
has value range minimum 0.0;
has value range maximum 1.0E7;
has value range resolution 1.0E4;
has valid subdomain "as_specified";
has invalid subdomain "abnormal".

Figure D4-5. System Design SDF for volume computer

D-28

s_packet

#include <s
Action
is
use

pro

Dataitem
is

Dataitem
is

Dataitem
is

Dataitem
is

Datatype
is
has
has
has
has
has

Datatype
is
has
has
has
has
has

Datatype
is
has
has
has
has
has

Datatype
is
has
has
has
has
has

Mod_weight computer pdl.

tp.std>
weight_ computer_ pdl

actiontype internal;
s dataitem

density,

gravity,

rs_volume;
duces dataitem

report_weight;.

density
an instance of datatype den_type.

gravity
an instance of datatype grav_type.

rs_volume
an instance of datatype volume_type.

report weight
an instance of datatype weight type.

den_type
datatypeclass real;
value range minimum 0.0;
value range maximum 1.0E3;
value range resolution 10.0;
valid subdomain "as_specified";
invalid subdomain "abnormal".

grav_type
datatypeclass real;
value range minimum 0.0;
value range maximum 20.0;
value range resolution 0.2;
valid subdomain "as_specified";
invalid subdomain "abnormal".

volume type
datatypeclass real;
value range minimum 0.0;
value range maximum 1.0E7;
value range resolution 1.0E4;
valid subdomain "as_specified";
invalid subdomain "“abnormal".

weight type
datatypeclass real;
value range minimum 0.0;
value range maximum 9.0e99;
value range resolution 1.0;
valid subdomain "“as_specified";
invalid subdomain "abnormal".

Figure D4-6. System Design SDF for mid level weight computer

D- 29

s_packet Mod_mass_computer.

#include <stp.std>
Action mass_computer

is actiontype internal;
uses dataitem
density,
rs_volume;
produces dataitem
mass; .

Dataitem density
is an instance of datatype den_type.

Dataitem rs_volume
is an instance of datatype volume_type.

Dataitem mass
is an instance of datatype mass_type.

Datatype den_type
is datatypeclass real;
has value range minimum 0.0;
has value range maximum 1.0E3;
has value range resolution 10.0:
has valid subdomain "as_specified";
has invalid subdomain "abnormal".

Datatype volume type
is datatypeclass real;
has value range minimum 0.0;
has value range maximum 1.0E7;
has value range resolution 1.0E4;
has valid subdomain "ag specified";
has invalid subdomain "abnormal™.

Datatype mass_type
is datatypeclass real;
has value range minimum 0.0;
has value range maximum 1.0E1%;
has value range resolution 1.0E8;
has valid subdomain "as_specified®;
has invalid subdomain "abnormal".

Figure D4-7. System Design SDF for mass computer

s_packet Mod by gravity.

#include <stp.std>
Action by _gravity
is actiontype internal;
uses dataitem
gravity,
mass;
produces dataitem
report_weight;.

Dataitem gravity
is an instance of datatype grav_type.

Dataitem mass
is an instance of datatype mass_type.

Dataitem report_weight
is an instance of datatype weight_ type.

Datatype grav_type
is datatypeclass real;
has value range minimum. 0.0;
has value range maximum 20.0;
has value range resolution 0.2;
has valid subdomain "as_specified";
has invalid subdomain "abnormal".

Datatype mass_type
is datatypeclass real;
has value range minimum 0.0;
has value range maximum 1.0E1l;
has value range resolution 1.0ES8;
has valid subdomain "as_specified";
has invalid subdomain "“abnormal".

. weight type
is datatypeclass real;

has value range minimum 0.0;

has value range maximum 9.0e89;

has value range resolution 1.0;

has valid subdomain "as_specified";
has invalid subdomain "abnormal".

Datatype

Figure D4-8. System Design SDF for low level weight computer (by gravity)

D5. Tverify /Tdesign Reports for Main Process

The T output files are itemized in Table D5-1 for the SD extraction for the main module
with file names, sizes, the numbers of pages shown, the T subunit generating the files
and identifying names for the outputs. The numbers of pages shown are selected based
on their instructive value. All of the output files are produced based on the input SDF
file and its included files. A brief description of these output files follows:

drf.p

cref.rpt

verify.rpt

sdmetric.rpt

sdf.p

summary.rpt

catalog.rpt

samples.rpt

design.rpt

This file is the design rule file produced by Tverify for use by
Tdesign based on the SDF. It lists the parameter names for each
action, i.e., process or module and the value assignment rules to
use for each datatype.

This file is a cross reference report which list the SDF, all its
include files, and various cross reference reports. (not shown)

This file is a verification report which lists the SDF and any errors
messages if applicable. The listing of the include files depends on
software switches within the include files.(not shown)

This file has a list of metrics pertaining to the SDF processed by
Tverify. Metrics reported include the numbers of actions, state
transitions, conditions, dataitems, datatypes, and states.

This file has the SDF and all its include files,(not shown)

The Test case Summary Report file shows the test cases with all
input completely identified. (Only 2 of its 60 pages are shown)

The Test case Catalog Report is a preview of the itemized test
cases. (Only 1 of its 10 pages are shown)

The Samples Report shows the selected values for each variable
going into the unit being tested.

The Test case design rule file is produced by Tdesign for use by
Tprepare .

filename file size pages T
lines pages shown product comments

drf.p 60 1
cref.rpt 544 11
verify.rpt 264 3
sdmetric.rpt 21 1
sdf.p 410 9

Tverify Test design rule file
Tverify Cross Reference Report
Tverify Verification Report
Tverify SDF Metric Report
Tverify preprocessed SDF

Tdesign Test case Summary Report
Tdesign Test case Catalog Report
Tdesign Samples Report

Tdesign Test case design rules

summary.rpt 3260 60
catalog.rpt 441 10
samples.rpt 101 2
design.rpt 84 1

[l S I ol o) (o e Nol

Table D5-1. T output files for weight computer

All files listed are labeled with their name at the beginning and end of their listings on
the pages which follow.

drf.p Wed Oct 26 09:38:46 EDT 1994
/* T Design Rule Generation Version 3.0
** Copyright (C) 1987-1992 Programming Environments, Inc.

*/

T_Packet
s_packet

CombinationRule
action
singular

SelectionRule
datatype
reference
valid
with

SelectionRule
datatype
reference
valid
with

SelectionRule
datatype
reference
valid
with

tpacket
Mod_Main_pdl

CR0001
Main_pdl;
width,
height,
length,
gravity,
density;

SR0O001

dim_type;

TBD;

as_specified

function, boundary, debug;

SR0002

grav_type;

TBD;

as_specified

function, boundary, debug;

SR0O003

den_type;

TBD;

as_specified

function, boundary, debug;

pe_mark

/home/eagle/banowetz/mail drf.p

sdmetric.rpt Wed Oct 26 09:39:21 EDT 1994
T Software Description Metrics Version 3.0
Copyright (C) 1987-1992 Programming Environments, Inc.

s_packet: Mod_Main_pdl
unitdate: Wed Oct 26 09:21:03 1994

Total Extra Verified Unverified Dynamic
1 0 1 0 action(s)
0 0 0 0 statetransition(s)

Total Extra Verified Unverified Static
In Out In Out

0 0 0 0 0 0 condition(s)
6 0 5 1 0 0 dataitem(s)
30 26 3 1 0 0 datatype(s)
0 0 0 0 0 0 state(s)
Deficiencies: 0
Inconsistencies: 0

/home/eagle/banowetz/mail sdmetric.rpt

D-35

summary.rpt - Tue Sep 27 08:33:44 EDT 1994
T Test Case Definitions Version 3.0

Copyright (C) 1987-1992 Programming Environments, Inc.

s_packet:
unitdate:
t_packet:
casedate:

Mod Main pdl

Mon Sep 26 12:17:38 1994
tpacket

Mon Sep 26 12:17:52 1994

FHASEFRFEFFFEFFFH AR H AR R AR B H AR E R SRR H SRR B R AR RS AR

CASENAME 01000001
EXERCISES Main_ pdl
IN STATE <unspecified>
PURPOSE all inputs at reference values
INPUT DATA
Name --- Value
width

--- 50.0
height

--- 50.0
length

--- 50.0
gravity

--~10.0
density

--- 500.0
START BY <unspecified>
END BY <unspecified>
OUTPUT DATA
Name --- Value
report_weight

-—~ “<unspecified>"
TRANSITION <none>
HHEHHHEHAFHEFHSHH LS HH A H LR H AR E 4R F S HE SR SRS RHHH S A HSH S S A 44444
CASENAME 01000002
EXERCISES Main pdl
IN STATE <unspecified>
PURPOSE all inputs at low boundary
INPUT DATA
Name --- Value
width

--- 0.0
height

--- 0.0
length

--~ 0.0
gravity

--- 0.0
density

--~ 0.0
START BY <unspecified>
END BY <unspecified>
OUTPUT DATA
Name --- Value
report_weight

-=- "<unspecified>"
TRANSITION <none> D-36

map,

FHEHEHHHHAH A B A H R R A EH R R 44 H AR R A AR H AR R R A R R A S
CASENAME 01000003

EXERCISES Main pdl
IN STATE <unspecified>
PURPOSE all inputs at high boundary
INPUT DATA
Name --- Value
width
--- 1,0E2
height
--- 1.0E2
length
--- 1.0E2
gravity
--=20.0
density
--- 1.0E3
START BY <unspecified>
END BY <unspecified>
OUTPUT DATA
Name --- Value

report_weight
~—— "<unspecified>"

TRANSITION <none>

FHEGHHEEHFHFHFRHFHFFF RS HHFHHFHHF A H BRI A A A H A H A A A A AR
CASENAME 01000004

EXERCISES Main pdl
IN STATE <unspecified>
PURPOSE to probe width at valid as_specified low_bound
INPUT DATA
Name --- Value
width
--- 0.0
height
--- 50.0
length
--- 50.0
gravity >
--- 10.0
density
--- 500.0
START BY <unspecified>
END BY <unspecified>
QUTPUT DATA
Name --- Value

report_weight
summary.rpt

D-37

catalog.rpt Mon Sep 26 12:22:31 EDT 1994
T Test Catalog Version 3.0 ‘
Copyright (C) 1987-1992 Programming Environments, Inc.

s_packet:
unitdate:
t_packet:
casedate:

Casename

01000001

01000002

01000003

01000004

01000005

01000006

01000007

01000008

01000009

01000010

01000011

01000012

01000013

01000014

Mod Main pdl

Mon Sep 26 12:17:38 1994
tpacket

Mon Sep 26 12:17:52 1994

Purpose (+ exercises action, - fails to exercise action)

+ action Main pdl
state <unspecified>
dataitem all at reference

+ action Main_ pdl
state <unspecified>
dataitem all at low boundary

+ action Main pdl
state <unspecified>
dataitem all at high boundary

+ action Main pdl
state <unspecified>
dataitem width (valid as_specified low_bound)

+ action Main pdl
state <unspecified>
dataitem width (valid as_specified high bound)

+ action Main pdl
state <unspecified>
dataitem width (valid as_specified low_debug)

+ action Main pdl
state <unspecified>
dataitem width (valid as_specified high_debug)

+ action Main pdl
state <unspecified>
dataitem width (invalid above_bounds above_bounds)

+ action Main pdl
state <unspecified> '
dataitem width (invalid below_bounds below bounds)

+ action Main_pdl
state <unspecified>
dataitem width (invalid out_of type out of type 1)

+ action Main_pdl
state <unspecified>
dataitem width (invalid out of type out_of type 2)

+ action Main pdl
state <unspecified>
dataitem width (invalid out of type out_of type 3)

+ action Main_ pdl
state <unspecified>
dataitem height (valid as_specified low_bound)

+ action Main_pdl
state <unspecified>
dataitem height (valid as_specified high bound)

D-38

samples.rpt — Mon Sep 26 12:22:53 EDT 1994
T Sample Generation Version 3.0
Copyright (C) 1987-1982 Programming Environments, Inc.

s_packet:
unitdate:
t_packet:
casedate:

——

Mod Main_pdl

Mon Sep 26 12:17:38 1994
tpacket

Mon Sep 26 12:17:52 1994

SubDomain Equiv.Class
valid as_specified
valid as_specified
valid as_specified
valid as_specified
valid as_specified
invalid above_bounds
invalid below_bounds
invalid out_of_ type
invalid out_of_type
invalid out_of_ type
SubDomain Equiv.Class
valid as_specified
valid as_specified
valid as_specified
valid as_specified
valid as_specified
invalid above_bounds
invalid below_bounds
invalid out_of type
invalid out_of type
invalid out of type
SubDomain Equiv.Class
valid as_specified
valid as_specified
valid as_specified
valid as_specified
valid as_specified
invalid above_bounds
invalid below_bounds
invalid out_of type
invalid out_of_ type
invalid out_of_type
SubDomain Equiv.Class
valid as_specified
valid as_specified
valid as_specified
valid as_specified
valid as_specified
invalid above_bounds
invalid below_bounds
invalid out_of type

reference
low_bound
high bound
low_debug
high_debug
above_bounds
below_bounds
out_of type 1
out of type 2
out_of type 3

reference
low_bound
high_bound
low_debug
high_debug
above_bounds
below_bounds
out_of type 1
out of type 2
out_of_ type 3

reference
low_bound

high bound T
low_debug

high debug
above_bounds
below_ bounds
out_of _type 1
out_of_ type 2
out_of type 3

reference
low_bound
high bound
low_debug
high_debug
above_bounds
below_bounds
out_of_type 1

D-39

——— o —— s T " —— —— o " -

Ial

[9] invalid
[10] invalid

Index SubDomain

6] invalid
7] invalid
8] invalid
9] invalid

[
(
[
[
[5] wvalid
[
[
[
[
[10] invalid

out_of type
out_of type

Equiv.Class
as_specified
as_specified
as_specified
as_specified
as_specified
above_bounds
below_bounds
out_of type
out_of type
out_of type

out_of type 2
out_of type 3

Label
reference
low_bound
high_bound
low_debug
high debug
above bounds
below_bounds
out_of type 1
out_of type 2
out_of type 3

- saving samples in test design data base

samples.rpt

Ial
"<not_in list>"

Ial
"<not_in_list>"

{

design.rpt - Mon Sep 26 12:23:19 EDT 1994
T Design Rule Verification Version 3.0
Copyright (C) 1987-1992 Programming Environments, Inc.

Translation

1 /* T Design Rule Generation Version 3.0
2 ** Copyright (C) 1987-1992 Programming Environments, Inc.
3 */
4
5 T Packet tpacket
6 s_packet Mod Main pdl
7 .
8
9 CombinationRule CRO0O01
10 action Main pdl;
11 singular width,
12 height,
13 length,
14 gravity,
15 density:
16
17
18 SelectionRule SR0001
19 datatype dim type:
290 reference TBD;
21 valid as_specified
22 with function, boundary, debug;
23
24
25 SelectionRule SR0002
26 datatype grav_type;
27 reference TBD;
28 valid as_specified
29 with function, boundary, debug;
30
31
32 SelectionRule SR0O003
33 datatype den_type:
34 reference TBD;
35 valid as_specified
36 with function, boundary, debug;
37
38
39 pe_mark

- finished translation with 5 recognizable TDRL sentences out of

Interpretation

s_packet: Mod Main pdl

unitdate: Mon Sep 26 12:17:38 1994
t_packet: tpacket

casedate: Mon Sep 26 12:17:52 1994

- saving rules in test design data base

design.rpt D-41

APPENDIX E. ASQ-212 Samples

E1. StP Output

E1.1 Data Flow Diagrams (DFDs)

E1.2 Data Structure Diagrams (DSDs)
E1.3 Software Description Files (SDFs)

E2. T Output For Process 1.1

E1. StP Output

This appendix illustrates a sample of StP diagrams and Test case results for the Navy
ASQ-212 project, the Tactical Mission Software (TMS) segment, the Navigation and
Steering Computer Software Configuration Item (CSCI)., and the
Determine_Steering Mode process.

El.1 Data Flow Diagrams (DFDs)

The DFDs needed to support Determine _Steering Mode (process 1.1) for the
Navigation and Steering CSCI are presented in the following figures:

Figure E1-1. Context Diagram for Navigation Steering (top level/ supporting text
omitted) Navigation Steering is a Computer Software Configuration Item (CSCI).

Figure E1-2. Level 0 DFD (supporting text omitted)

Figure E1-3. Level 1 DFD (supporting text omitted)

Project: /staff/imet/banowetz/STP/
System: vb212
Diagram: top

¥ Nev o

- MPE To Apps

Communication

Initislization Statis IR

Nav

Baro Nav
Nav Altimeter Sysem
Simulation
Dats
csa \ \ FDS
Simulated
-~ P Baro
Application Aircnft
e ’Mmim Alimeter
Bax ™ Navigation FDS Out
Dats Application
Extraction
Daun
. Nav
Navigation Sysiem
Dats In
FDS | Nav Adv
- t
Navigation
Ditalzation [" bas
HS1In

Navigation

Panel

HFI Ot

INSIn

Incrtial

] Nav

OMEGA In™ oMEGA

devigat
Swering OMEGA Out

Slmu'e Doppier In
Sution \
Da Doppler
MISC
USR HSP
Response. Dats “~p
Sution
Request
u AmToMMr U5 N
AmN Comnmumication
-INav
Data Core
MM To Apps
\ Cmmn\m y
MMI
csa
Ordnance csa
csa

Figure E1-1. Context Diagram for Navigation Stéering

(top level/ supporting text omitted)

E-3

Project:
System:
Diagram:

/staff/imet /banowetz/STP/
vb212
0

Figure E1-2. Level 0 DFD

Srae
{3
’

E-4

OMEGA Ib
/

Project: /staff/imet/banowetz/STP/
System: vb21l2
Diagram: 1

1

Fly-To-Point P
Ca Capture

Fly To

Point

Steering
Fly To
Point

Fly To
Point

Update

Aircraft)
Atributes Attributes

Navigation
Parameters

Fly To Commmd
Point
Position Sm“‘
15+
Steering
Calculations
s Event _@
focting Out /= = Seering -
Fly To l‘};ﬁ'ﬂ Activation
Point ttion
Attributes

Normal
-)
Activation

Figure E1-3. Level 1 DFD

E1.2 Data Structure Diagrams (DSDs)

Figure E1-4 has the DSDs for the components of process 1.1 (changes hand marked)
The annotations provided with the DSDs provide additional descriptive information on
the data items including type and, where applicable, values, or domain. The types for
dataitems used in process 1.1 were changed to be compatible with T. In some cases,
this was merely a change in case (Boolean to boolean, String to string, etc.). More
typically, the type numeric was used and had to be changed to an added defined type
such as Lat_Type, Lon_Type, Radius_Type, or Angle_Type. for the Fly_To_Point data
structure. In the case of "FTP_Runout_Status”, an enumeration object had to be built
in the DSD itself to replace an object represented as a list of possible values. The
changes to the diagrams are hand annotated.

E-6

Project: /staff/imet/banowetz/STP/
System: vb212
Diagram: FDS_In

FDS In

Figure E1-4. Data Structure Diagrams for the components of process 1.1

E-7

Diagram FDS In:

Element FDS_In:

Note DataDefinition FDS_In

Accuracy: N/A

Frequency: N/A

Legality: N/A

Name: FDS_In

Priority: N/A

Precision: N/A

Representation: N/A

Type: boolean

Units: N/A
This interface provides the status of the Computer Track
(COMP TRK CONT) switch on the Flight Directicn System.

Note Document IRS
Document: IRS

Note Document SRS
Document: SRS

E-8

Project: /staff/imet/banowetz/STP/
System: vb212
Diagram: HSTI In

HSI In

Diagram HSI In:

Element HSI In:

Note DataDefinition HSI_In

Accuracy: N/A

Frequency: N/A

Legality: N/A

Name: HSI In

Priority: N/A

Precision: N/A

Representation: N/A

Type: boolean

Units: N/A
Pilot input from the Horizontal Situation Indicator.
Providing the status of the Pilot Course Selection
switch. .o~

Note Document IRS
Document: IRS

Note Document SRS
Document: SRS

E-10

Diagram HSI In:

Element HSI In:

Note DataDefinition HSI_ In
Accuracy: N/A
Frequency: N/A
Legality: N/A
Name: HSI In
Priority: N/A
Precision: N/A
Representation: N/A
Type: boolean
Units: N/A
Pilot input from the Horizontal Situation Indicator.
Providing the status of the Pilot Course Selection
switch. .
Note Document IRS
Document: IRS

Note Document SRS
Document: SRS

l _‘-ﬂ -A‘ - “ _

T
-

Project: /staff/imet/banowetz/STP/
System: +vb212
Diagram: Tactics_Tracking-Nav

Tactics
Tracking-Nav

Steering
Fly To Point

Capture
Fly To Point

Fly To Point

Fly To Point

Data Structure Diagram Tactics_Tracking-Nav

E-12

Project: [staff/imet/banowetz/STP/
System: vb212
Diagram: Fly To_Point

Fly To Point
Designation Fly To Point Fly To Point
Type Type Position
. Orbit Designated Fly To Point Fly To Point
Undesignated Radius Angle L!.itude Longitude
Radius_Type Angle_Type Lat_Type Lon_Type

Data Structure Diagram Fly To Point

E-13

Diagram Fly To_ Point:

Data Structure Designation Type:

Note DataDefinition Designation_Type
Accuracy: N/A
Frequency: N/A
Legality: N/A
Name: Designation_Type
Priority: N/A
Precision: N/A
Representation: N/A
Units: N/A
Indicates if the FTP is designated or
undesignated.

Note Document SRS
Document: SRS R

Data Structure Fly To Point:

Note DataDefinition Fly To_Point
Accuracy: N/A
Frequency: N/A
Legality: N/A
Name: Fly_To Point
Priority: N/A
Precision: N/A
Representation: N/A
Units: N/A
This interface provides the FTP type and position
for the highest priority FTP.

Note Document IRS
Document: IRS

Note Document SRS
Document: SRS

Data Structure Fly To Point_Position:

Note DataDefinition Fly To Point_Position
Accuracy: N/A
Frequency: N/A
Legality: N/A
Name: Fly To_Point_Position
Priority: N/A
Precision: N/A
Representation: N/a
Units: N/A
This interface provides the latitude and longitude for the
FTP.

Note Document IRS
Document: IRS

Element Angle_ Type:

Note DataDefinition Angle Type
Name: Angle_Type

Type: real
Units: degrees E-14

Note Domain
Increment: 1.0
Minimum: 0.0
Maximum: 360.0

Element Designated RAngle:

Note DataDefinition Designated Angle
Accuracy: N/A
Constraint: 0..360
Frequency: N/A
Legality: N/A
Name: Designated Angle
Priority: N/A
Precision: N/A
Representation: N/A
Type: Angle_Type
Units: Degrees
The designated track angle at the FTP.

Note Document IRS
Document: IRS

Element Fly To_Point_ Latitude:

Note DataDefinition Fly To Point_Latitude
Accuracy: N/A
Constraint: [-90.0,90.0]
Frequency: N/A
Legality: N/A
Name: Fly To_Point_Latitude
Priority: N/A
Precision: N/A
Representation: N/A
Type: Lat_Type
Units: Degrees

The FTP latitude.

Note Document IRS
Document: IRS

Element Fly To_Point_ Longitude:

Note DataDefinition Fly To_Point_longitude
Accuracy: N/A
Constraint: (-180,180]
Frequency: N/A
Legality: N/A
Name: Fly To_Point_Longitude
Priority: N/A
Precision: N/A
Representation: N/A
Type: Lon_ Type
Units: Degrees

The FTP longitude.

Note Document IRS
Document: IRS

Element Lat_Type:

Note DataDefinition Lat_Type
Name: Lat_Type
Type: real

E-15

i
¥
!
I
|
J
I
!
1
!
!
1
1

Units: degrees

Note Domain
Increment: 1.0
Minimum: -90.0
Maximum: 90.0

s e —————

Element Lon_Type: i

Note DataDefinition Lon_Type !
Name: Lon_Type ;
Type: real :
Units: degrees

Note Domain
Increment: 1.0
Minimum: ~180.0
Maximum: 180.0

Element Orbit_Radius:

Note DataDefinition Orbit Radius
Accuracy: N/A
Constraint: 2000..200475
Frequency: N/A
Legality: N/A
Name: Orbit_Radius
Priority: N/A
Precision: N/A
Representation: N/A
Type: Radius_Type
Units: Yards

Radius of the orbit circle.

Note Document SRS
Document: SRS

Element Radius_Type:

Note DataDefinition Radius_Type
Name: Radius_Type
Type: real
Units: yards

Note Domain
Increment: 1.0
Minimum: 2000.0
Maximum: 200475.0

Element Undesignated:

Note DataDefinition Undesignated
Accuracy: N/A
Frequency: N/A
Legality: N/A
Name: Undesignated
Priority: N/A
Precision: N/A
Representation: N/A
Type: boolean '
Units: N/A
Provides the indication as to whether the FTP can be captured using any
heading.

Note Document IRS E—16

Project: /staff/imet/banowetz/STP/
System: vb212
Diagram: Fly To_Point_Type
Fly To Point
Type
[9] 3 roc) ©
Flight Pattern Intercent oceed Orbit Orbit
Plan Orbit P P oi?n Datum Tangential
J)) e O [
Sensor Normal Exﬁ?}gﬁ)l e Expendable Monitor
[© s O
Weapon Harpoon ?jg%?
v e
Single Mine
Weapon Train
Release
Option Final

Data Structure Diacram Fly To_Point_Type

E-17

Project: /staff/imet/banowetz/STP/

System: vb212

Diagram: Steering Results

Steering
Results

Tactical
Steering
Status

Estimated
Time of
Arrival

Manual
Steering
Data

Estimated
Time
Enroute

Data Structure Diagram Steering Results

E-18

Distance
To Go

Diagram Steering Results:

Note diag
Name: Steering_Results

Note Document SRS
Document: SRS

Data Structure Manual Steering Data:

Note DataDefinition Manual_ Steering Data
Accuracy: N/A
Frequency: N/A
Legality: N/2
Name: Manual_ Steering Data
Priority: N/A
Precision: N/A
Representation: N/A
Units: N/A :
The Steering Data data that is independent of
which steering mode is currently assigned.

Note Document SRS
Document: SRS

Data Structure Steering Results:

Note DataDefinition Steering Results
Accuracy: N/A
Frequency: N/A
Legality: N/A
Name: Steering_Results
Priority: N/A
Precision: N/A
Representation: N/A
Units: N/A
The results of the steering function.

Note Document SRS
Document: SRS

Element Tactical Steering Status:

Note DataDefinition Tactical_Steering_Status
Accuracy: N/A
Frequency: N/A
Legality: N/A
Name: Tactical Steering_Status
Priority: N/A
Precision: N/A
Representation: N/A
Type: boolean
Units: N/A
The tactical steering status as determined by
the steering process.

Note Document SRS
Document: SRS

R-19

Project: /staff/imet/banowetz/STP/
System: vb212
Diagram: FTP_Run Out_Status

FTP Run Out
Status

- .

Diagram FTP_Run Out_ Status:

Element FTP_Run Out_Status:

Note DataDefinition FTP_Run_Out_Status

Accuracy: N/A

Frequency: N/A

Legality: N/A

Name: FTP_Run_Out_Status
Priority: N/A

Precision: N/A
Representation: N/A
Type: string
.Units: N7A

Value: “"Runout_In_Progress"

//

-

il

is data indicates whether or.-not’a FIP is in runout.

(Value: "Runout_Not In Progress"™ ..

E-21

I G NN S GE UL SN PR Am GW O G GR am e

Project: /staff/imet/banowetz/STP/
System: vb212
Diagram: FTP_Run Out Status

Runout_In
Progress

Data Structure Diagram

FTP Run Out
Status
Runout_Not
In_Progress

E-22

FTP_Run_Out_Status

added

Diagram FTP_Run_Out_Status:

Data Structure FTP _Run Out_Status:

Note DataDefinition FTP_Run_Out_Status
Accuracy: N/A
Frequency: N/A
Legality: N/A
Name: FTP_Run_Out_Status
Priority: N/A
Precision: N/A
Representation: N/A
Units: N/A .
This data indicates whether or not a FTP is in

runout .

/f/ew (A/a7

Project
System
Diagram

/staff/imet/banowetz/STP/
vb21l2
Steering_Mode

Steering Mode

Data Structure Diagram Steering Mode

E-24

Diagram Steering Mode:

Element Steering Mode:

Note DataDefinition Steering Mode
Accuracy: N/A
Frequency: N/A
Legality: N/A
Name: Steering Mode
Priority: N/A
Precision: N/A
Represgntation: N/A v
Type:écring . 5-6""\
UnitsY N/A 7
Value: "Designated Steering”
Value: “"Great_Circle"
Value: "Manual"
Value: "Undesignated_Ste&éring"

Note Document SRS
Document : SRS

E-25

E1.3 Software Description File (SDF)

Figure E1-5 has the SDF file for process 1.1 (Determine Steering Mode). The SDF action
Determine_Steering_Mode is produced from the extraction of process 1.1. The
dataitems are listed next in the order used by the action. The datatypes follow in the
order used. Types not defined here are defined in the file <stp.std> included at the top
of the file.

E-26

s_packet

#include <stp.std>

Action

Proc_Determine_Steering_Mode.

Determine_Steering Mode

is actiontype internal;
uses dataitem

Fly To_
Fly_To_
Fly To_

Point_Latitude,
Point_Longitude,
Point_Type,

Undesignated,
Orbit_Radius,
Designated_Angle,
Tactical_Steering_Status,
FTP_Run_Out_Status,

HSI_In,
FDS_In;

produces dataitem
Steering_Mode; .

Dataitem
is

Dataitem
is

Dataitem
is

Dataitem
is

Dataitem
is

Dataitem
is

Dataitem
is

Dataitem
is

Dataitem
is

Dataitem
is

Dataitem
is

Datatype

an

an

an

an

an

an

an

an

an

an

an

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

Fiy_To_Point_Latitude
of datatype Lat_Type.

Fly To_Point_Longitude
of datatype Lon_Type.

Fly_To_Point_Type
of datatype Fly To_Point_Type_t.

Undesignated
of datatype boolean_string.

Orbit_Radius
of datatype Radius_Type.

Designated_Angle
of datatype Angle_Type.

Tactical_Steering Status
of datatype boolean_string.

FTP_Run_Out_Status
of datatype FTP_Run_Out_Status_t.

HSI_In
of datatype boolean_string.

FDS_In
of datatype boolean_string.

Steering_Mode
of datatype DefaultString.

Lat_Type

is datatypeclass real;

value range minimum -90.0;
value range maximum 90.0;
value range resolution 1.0;
valid subdomain "as_specified";
invalid subdomain “"abnormal".

has
has
has
has
has

Figure E1-5. SDF file for process 1.1 (Determine Steering Mode)

E-27

R e o

Datatype Lon_Type
is datatypeclass real;
has value range minimum -180.0;
has value range maximum 180.0;
has value range resolution 1.0;
has valid subdomain "as_specified";
has invalid subdomain "abnormal".

Datatype Fly_To_Point_Type_t
is datatypeclass string;
has values
"Orbit_Datum",
"Monitor",
"Orbit_Tangential",
*Flight_Plan",
*Sensor",
“Pattern_Orbit",
"Weapon",
“Normal",
"Intercept",
"Harpoon",
"Pattern_Expendable",
*Proceed_To_Point",
*Harpoon_Launch",
"Expendable*;
has valid subdomain "as_specified";
has invalid subdomain "not_in_list®".

Datatype Radius_Type
is datatypeclass real;
has value range minimum 2000.0;
has value range maximum 200475.0;
has value range resolution 1.0;
has valid subdomain "as_specified";
has invalid subdomain "abnormal".

Datatype Angle_Type
is datatypeclass real;
has value range minimum 0.0;
has value range maximum 360.0;
has value range resolution 1.0;
has valid subdomain “as_specified";
has invalid subdomain "abnormal".

Datatype FTP_Run_Out_Status_t
is datatypeclass string;
has values
*Runout_In_Progress",
"Runout_Not_In_Progress";
has valid subdomain "as_specified";
has invalid subdomain "not_in_list".

E-28

E2. T Output for Process 1.1

The T output files are itemized in Table E2-1 for the SA extraction for the 1.1 process
with file names, sizes, the numbers of pages shown, the T subunit generating the files
and identifying names for the outputs. The numbers of pages shown are selected based
on their instructive value. All of the output files are produced based on the input SDF
file and its included files. See Appendix D for a brief description of these output files.

filename file size pages T
lines pages shown product comments

drf.p 72 2 2 Tverify Test design rule file
cref.rpt 559 11 0 Tverify Cross Reference Report
verify.rpt 190 4 0 Tverify Verification Report
sdmetric.rpt 21 1 1 Tverify SDF Metric Report

sdf.p 482 9 0 Tverify preprocessed SDF
summary.xypt 2310 40 2 Tdesign Test case Summary Report
catalog.rpt 249 5 1 Tdesign Test case Catalog Report
samples.rpt 128 2 2 Tdesign Samples Report
design.rpt 93 2 2 Tdesign Test case design rules

Table E2-1. T output files for a Navigation-Steering Process

The most interesting of the above files are samples.rpt and summary.rpt. The
samples.rpt file shows the selected values for each variable going into the unit being
tested. The summary.rpt files shows the test cases with all input completely identified.
(Only 2 of its 40 pages are shown). The files verify.rpt, sdf.p and cref.rpt are not shown
since they are little more than a repeat or an expansion of the SDF file. All files are
labeled with their name at the beginning and end of their listings on the pages which
follow.

drf.p Mon Sep 26 11:15:37 EDT 1994

/* T Design Rule Generation

Version 3.0

% Copyright (C) 1987-1992 Programming Environments, Inc.

*/

T_Packet
s_packet

CombinationRule
action
singular

CombinationRule
action
singular

SelectionRule
datatype
reference
valid

SelectionRule
datatype
reference
valid

SelectionRule
datatype
reference
valid

SelectionRule
datatype
reference
valid

SelectionRule
datatype
reference
valid

with

with

with

with

with

tpacket

Proc_Determine_Steering_Mode

CrR0001

Determine Steering Mode 1;
Fly To_Point_Latitude,
Orbit_ Radius,

Designated Angle,
Tactical_Steering Status,
FTP_Run_Out_Status,

HSI In,

FDS_In;

CR0002

Determine Steering Mode_2Z;
Fly To Point_Longitude,
Fly_ To_Point_Type,
Undesignated,

Orbit_ Radius,
Designated_Angle,
Tactical Steering Status,
FTP_Run_Out_Status,

HSI In,

FDS_1In;

SR0001

boolean_string:;

TBD:;

as_specified

function, boundary, debug:;

SR0002

Lat_Type:;

TBD;

as_specified

function, boundary, debug:

SR0003

Lon_Type:

TBD;

as_specified

function, boundary, debug:

SR0004

Fly To_Point Type t;

TBD;

as_specified

function, boundary, debug:

SR0O005
Radius_Type;
TBD;
as_specified

function, boundary, 4 ;
ti%%0 ry ebug

SelectionRule
datatype
reference
valid
with

SelectionRule
datatype
reference
valid
with

drf.p

SRO006

Angle_Type:

TBD;

as_specified

function, boundary, debug;

SRO007

FTP_Run_ Out_Status_t;

TBD;

as_specified

function, boundary, debug;

pe_mark

E-31

sdmetric.rpt Fri Sep 23 15:22:05 EDT 1994
T Software Description Metrics Version 3.0
Copyright (C) 1987-1992 Programming Environments, Inc.

s_packet: Proc Determine Steering Mode
unitdate: Fri Sep 23 11:51:31 1994

Total Extra Verified Unverified Dynamic
2 0 2 0 action(s)
0 0 0 0 statetransition(s)

Total Extra Verified Unverified Static
In Out In Out

i s S e . e . e S B — (s T T " o s S o o —— T —— o > _—— = " e o — —— o o ——— - T~ —— ——

0 0 0 0 0] 0 condition (s)
11 0 10 1 0 0 dataitem(s)
32 24 7 1 0 0 datatype(s)
0 0 0 0 0 0 state (s)
Deficiencies: 0 -
Inconsistencies: 0

sdmetric.rpt

summary.rpt Fri Sep 23 15:23:23 EDT 1994
T Test Case Definitions Version 3.0
Copyright (C) 1987-1992 Programming Environments, Inc.

s_packet: Proc_Determine_Steering Mode
unitdate: Fri Sep 23 11:51:31 1994
t_packet: tpacket

casedate: Fri Sep 23 11:51:35 1994

#HEHAFHARRH R AR R E L HHEEH SR HHESSHE S HHH A B AR AR AR AR R R R E 4 4
CASENAME 01000001

EXERCISES Determine_Steering Mode 1

IN STATE <unspecified>

PURPOSE all inputs at reference values
INPUT DATA

Name --- Value

——— - ——————— — — " —— —— T — . = = e S . ke S i i W T ——— o o S T ——— " " o T — . - 4 - —— o o - — ———

Fly_To Point_Latitude

--- 0.0
Orbit Radius
---101237.0
Designated Angle -
---180.0
Tactical_Steering Status
--- "FALSE"™

FTP_Run_Out_Status
-—- "Runout_ Not In Progress"

HSI In

--- “FALSE"
FDS_In

--- "FALSE"
START BY <unspecified>
END RY <unspecified>
OUTPUT DATA
Name --- Value

Steering Mode

--—- "<unspecified>"
TRANSITION <none>
FHEHE4FHFFHHHEHFHHHFEFH A FHHFIHHFHH I I IR HL R HERABHH S H A S S A SRS HHH A4
CASENAME 01000002
EXERCISES Determine_Steering Mode_1
IN STATE <unspecified>
PURPOSE all inputs at low boundary
INPUT DATA

Name --- Value
Fly To _Point_Latitude
--= ~390.0
Orbit_Radius
--- 2000.0
Designated Angle
--- 0.0
Tactical Steering Status
- — llTRUE"
FTP_Run Out_Status
-~= "Runout In Progress"

HSI In
~~~ "TRUE"

FDS_In
--- "TRUE"

START BY <unspecified>




END BY <unspecified>
OUTPUT DATA
Name =--- Value

———— T o e S T S T S T o . S S T T S . s i, s o o S S o S o T — T~ T T T Rl s o W T 7 i S T S e e e S e i e v e S

Steering_Mode
——=— "<unspecified>"

i — o T T G T U e S, e o S S A S Y T Y — . (. S e Tt e o W S S T o | e i S S e WL G . e e e . W . e o

TRANSITION <none>

FEEEFFEAF AR HEF R HEH AR IR F R H R R R EH R E RS H AR RS E AR A R R 4
CASENAME 01000003

EXERCISES Determine_Steering Mode 1
IN STATE <unspecified>

PURPOSE all inputs at high boundary
INPUT DATA

Name --- Value
Fly To Point_ Latitude

---90.0
Orbit_Radius

--— 200475.0
Designated Angle

--- 360.0
Tactical_ Steering_ Status

--— "FALSE"
FTP_Run_Out_Status

--— "Runout_ Not_ In Progress"

HSI In
--- "FALSE"
FDS In
~ —-— “FALSE"
START BY <unspecified>
END BY <unspecified>
OUTPUT DATA
Name --- Value

Steering Mode
~-- "<unspecified>"

TRANSITION <none>

FHFHH R FHHHHFEFHFHHF S FH R HHHH B HHF R R LR BB EHHA B HRA S H B A HH A SRR RS
CASENAME 01000004

EXERCISES Determine_Steering Mode 1

IN STATE <unspecified>

PURPOSE to probe Fly To_Point_Latitude at valid as_specified low_bound
INPUT DATA

Name --- Value

- T —— (- S ——— " ——— g o —— Y o — - T ——— T — o 7 S o ——— — — o A i G o o e T o o S e S o

Fly To_Point_Latitude
--= ~90.0
Orbit_Radius
---101237.0
Designated Angle
---180.0
Tactical Steering_ Status
-—-- "“"FALSE"
FTP_Run_Out_Status
—-- "Runout Not In Progress"
HSI In
--- “FALSE"
FDS In
~=-~ “FALSE"

o e i e s i e T~ o — 1 A T " —— T T " T~ ——— — — — T T " — " —— s T o 7 o e B o A o s T v




catalog.rpt Fri Sep 23 15:24:28 EDT 1994
T Test Catalog Version 3.0
Copyright (C) 1987-1992 Programming Environments, Inc.

s_packet:
unitdate:
t_packet:
casedate:

Casename

01000001

01000002

01000003

01000004

01000005

01000006

01000007

01000008

01000009

01000010

01000011

01000012

01000013

Proc_Determine_Steering Mode
Fri Sep 23 11:51:31 1994
tpacket

Fri Sep 23 11:51:35 1994

Purpose ( + exercises action, - fails to exercise action)

+ action Determine Steering Mode 1
state <unspecified>
dataitem all at reference

+ action Determine Steering Mode 1

state <unspecified>
dataitem all at low boundary

+ action Determine_Steering_Mode_ 1
state <unspecified>
dataitem all at high boundary

+ action Determine Steering Mode 1

state <unspecified>

dataitem Fly To Point Latitude (valid as_specified low_bound)
+ action Determine Steering Mode 1

state <unspecified>
dataitem Fly To Point_ Latitude (valid as_specified high bound)

+ action Determine Steering Mode_ 1
state <unspecified>
dataitem Fly To Point Latitude (valid as_specified low_debug)

+ action Determine Steering Mode 1
state <unspecified>
dataitem Fly To_Point_Latitude (valid as_specified high_debug)

+

action Determine Steering Mode 1
state <unspecified> ~
dataitem Fly To Point Latitude (invalid above_ bounds above_ bounds)

+ action Determine_Steering Mode 1
state <unspecified>
dataitem Fly To_Point_Latitude (invalid below_bounds below_bounds)

+ action Determine_Steering Mode_ 1

state <unspecified>

dataitem Fly To Point_Latitude (invalid out_of_ type out_of type_ 1)
+ action Determine_ Steering Mode_ 1

state <unspecified>
dataitem Fly To_Point_Latitude (invalid out of type out_of type 2)

+ action Determine Steering Mode 1
state <unspecified>
dataitem Fly To_Point_Latitude (invalid out_of_ type out_of_type_ 3)

+ action Determine Steering Mode_1
state <unspecified>

catalog.rpt

E-35




samples.rpt Mon Sep 26 11:33:25 EDT 1994
T Sample Generation Version 3.0

Copyright (C) 1987-1992 Programming Environments, Inc.

s_packet:
unitdate:
t_packet:
casedate:

Proc_Determine_ Steering_Mode

Fri Sep 23 11:51:31 1994

tpacket

Fri Sep 23 11:51:35 1994

Designated Angle

Index

————

SubDomain Equiv.Class

valid as_specified
valid as_specified
valid as_specified
valid as_specified
valid as_specified
invalid above_bounds
invalid below_bounds
invalid out_of_ type

invalid out_of.type

invalid out_of type

SubDomain Equiv.Class

as_specified
as_specified

FTP_Run_Out_Status

SubDomain Equiv.Class

valid as_specified
valid as_specified
invalid not_in_list

Fly To_Point_Latitude

SubDomain Equiv.Class

valid as_specified
valid as_specified
valid as_specified
valid as_specified
valid as_specified
invalid  above_bounds
invalid below_bounds
invalid out_of_ type

invalid out_of_type

invalid out_of type

Fly To Point_Longitude

SubDomain Equiv.Class

valid as_specified
valid as_specified
valid as_specified
valid as_specified
valid as_specified
invalid  above_bounds
invalid below_bounds
invalid out_of_type

reference
low_bound
high_bound
low_debug
high_debug
above_ bounds
below_bounds
out_of type 1
out_of type 2
out_of type 3

reference
low_bound

reference
low_bound
not_in_list

reference
low_bound
high_bound
low_debug
high_debug
above_bounds
below_bounds
out_of type 1
out_of_type_ 2
out_of type 3

reference
low_bound
high_bound
low_debug
high debug
above bounds
below_ bounds
out_of type 1
z-36

"FALSE"
"TRUE"

"Runout_Not_In_ Progress"
"Runout_In Progress"
"<not_in_ list>"

-90.0

90.0

-89.0

89.0

91.0

-91.0

9

lal

"<not_ in_list>"




[ 9] invalid
[ 10) invalid

Fly To_Point_Type

SubDomain

Orbit_Radius

SubDomain

invalid
7] invalid
8] invalid
9] invalid
10] invalid

out_of type
out_of type

Equiv.Class

as_specified
as_specified
as_specified
as_specified
as_specified
as_specified
as_specified
as_specified
as_specified
as_specified
as_specified
as_specified
as_specified
as_specified
not_in list

Equiv.Class
as_specified
as_specified

Equiv.Class
as_specified
as_specified
as_specified
as_specified
as_specified
above_bounds
below_bounds
out_of_type
out_of type
out_of type

Tactical_ Steering_Status

SubDomain

Index

[ 1] valid
[ 2] valid

Undesignated

SubDomain

valid
valid

Equiv.Class

as_specified
as_specified

Equiv.Class

as_specified
as_specified

out_of type_ 2
out_of type_3

reference
low_bound
high_bound
element_ 2
element_3
element_ 4
element_5
element_6
element_ 7
element 9
element 10
element_ 11
element 12
element_13
not_in_list

reference
low_bound

reference
low_bound
high_bound
low_debug
high_debug
above_bounds
below_bounds
out_of type 1
out_of type 2
out_of type 3

—— o o B (. OH02 S St i ta e S

reference
low_bound

reference
low_bound

- saving samples in test design data base

samples.rpt

E-37

Ial
"<not_in list>"

"Normal"
"Orbit_Datum"
"Expendable"
"Monitor™"
"Orbit_Tangential"®
"Flight Plan"
"Sensor"

"Pattern Orbit"
"Weapon"
"Intercept™
"Harpoon"
"Pattern_Expendable"
"Proceed To_Point"
"Harpoon_Launch"
“"<not_in_list>"

"FALSE"
"TRUE"

101237.0

2000.0

200475.0

2001.0

200474.0
200476.0

1999.0

S

lal
"<not_in_list>"

"FALSE"
"TRUE"

"FALSE"
"TRUE"




design.rpt Fri Sep 23 15:24:57 EDT 1994

T Design Rule Verification Version 3.0

Copyright (C) 1987-1992 Programming Environments, Inc.

Translation

OCoOo-JaWnd WK

PR e e s
COJAUM B W HO

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

/* T Design Rule Generation Version 3.0
** Copyright (C) 1987-1992 Programming Environments, Inc.
*/

T Packet
s_packet

CombinationRule
action
singular

CombinationRule
action
singular

SelectionRule
datatype
reference
valid
with

SelectionRule
datatype
reference
valid
with

SelectionRule
datatype
reference
valid
with

SelectionRule
datatype
reference
valid
with

tpacket

Proc_Determine_Steering_ Mode

CRO001

Determine_Steering Mode_1;
Fly To_Point_Latitude,
Orbit_Radius,
Designated_Angle,

Tactical Steering Status,
FTP_Run_Qut Status,

HSI In,

FDS_In;

CR0002

Determine_ Steering Mode_2;
Fly To Point_Longitude,
Fly Tc Point_ Type,
Undesignated,

Orbit_ Radius,

Designated Angle,
Tactical Steering Status,
FTP_Run_Out_Status,

HSI 1In,

FDS_1In;

SR0001

boolean_string;

TBD;

as_specified

function, boundary, debug:;

SR0002

Lat_Type:;

TBD:;

as_specified

function, boundary, debug:

SR0003

Lon_Type:

TBD;

as_specified

function, boundary, debug;

SR0004

Fly To_Point_ Type t:

TBD;

as_specified

function, boundary, debug:

E-38




59

60

61 SelectionRule

62 datatype

63 reference

64 valid

65 with
66

67

68 SelectionRule

69 datatype

70 reference

71 valid

72 with
73

74

75 SelectionRule

76 datatype

77 reference

78 valid

79 T with
80 '

81

82

- finished translation with 10

s_packet: Proc_Determine_ Steering Mode
unitdate: Fri Sep 23 11:51:31 1994
t_packet: tpacket

casedate: Fri Sep 23 11:51:35 1994

SRO005

Radius_Type:;

TBD;

as_specified

function, boundary, debug:;

SR0006

Angle_ Type:

TBD;

as_specified

function, boundary, debug;

SRO007
FTP_Run_OQOut_Status_t;

TBD;

as_specified

function, boundary, debug:;

pe_mark

recognizable TDRL sentences out of 10

- saving rules in test design data base

design.rpt




APPENDIXF. Documentation Errors
The following documentation errors were reported to IDE:
T Users Guide

TSDL Manual
Section 2.7: references in Figure 9 are N/A. Ex: to Section 3.3.19
Section 4, Figure 17: The trace.rpt and tdmetric.rpt reports are not
produced by tdesign.
Section 4.2: "echo on" should be "echo”

Reports Manual

Section 2: There is no discussion of cref.rpt or sdf.p as listed on page 18
of the Operations Manual

Section 2.2: Figure 7 does not contain the "Greatest Lookup
Level"information as stated.

Section 3: (Reports-9) There is no discussion of design.rpt as listed on
page 18 of the Operations Manual

Section 3.2: The tdmetric.rpt report is not produced by tdesign.

Section 3.4: The trace.rpt report is not produced by tdesign.

Application Note: Software through Pictures (StP) and T Integration
Page 11: The Satisfy Preconditions flag is apparently the "Preconditioned"
variable in tconfig.ini




